1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
//! A Rust wrapper for the Fast Artificial Neural Network library.
//!
//! A new neural network with random weights can be created with the `Fann::new` method, or, for
//! different network topologies, with its variants `Fann::new_sparse` and `Fann::new_shortcut`.
//! Existing neural networks can be saved to and loaded from files.
//!
//! Similarly, training data sets can be loaded from and saved to human-readable files, or training
//! data can be provided directly to the network as slices of floating point numbers.
//!
//! Example:
//!
//! ```
//! extern crate fann;
//! use fann::{ActivationFunc, Fann, TrainAlgorithm, QuickpropParams};
//!
//! fn main() {
//!    // Create a new network with two input neurons, a hidden layer with three neurons, and one
//!    // output neuron.
//!    let mut fann = Fann::new(&[2, 3, 1]).unwrap();
//!    // Configure the activation functions for the hidden and output neurons.
//!    fann.set_activation_func_hidden(ActivationFunc::SigmoidSymmetric);
//!    fann.set_activation_func_output(ActivationFunc::SigmoidSymmetric);
//!    // Use the Quickprop learning algorithm, with default parameters.
//!    // (Otherwise, Rprop would be used.)
//!    fann.set_train_algorithm(TrainAlgorithm::Quickprop(Default::default()));
//!    // Train for up to 500000 epochs, displaying progress information after intervals of 1000
//!    // epochs. Stop when the network's error on the training data drops to 0.001.
//!    let max_epochs = 500000;
//!    let epochs_between_reports = 1000;
//!    let desired_error = 0.001;
//!    // Train directly on data loaded from the file "xor.data".
//!    fann.on_file("test_files/xor.data")
//!        .with_reports(epochs_between_reports)
//!        .train(max_epochs, desired_error).unwrap();
//!    // The network now approximates the XOR problem:
//!    assert!(fann.run(&[-1.0,  1.0]).unwrap()[0] > 0.9);
//!    assert!(fann.run(&[ 1.0, -1.0]).unwrap()[0] > 0.9);
//!    assert!(fann.run(&[ 1.0,  1.0]).unwrap()[0] < 0.1);
//!    assert!(fann.run(&[-1.0, -1.0]).unwrap()[0] < 0.1);
//! }
//! ```
//!
//! FANN also supports cascade training, where the network's topology is changed during training by
//! adding additional neurons:
//!
//! ```
//! extern crate fann;
//! use fann::{ActivationFunc, CascadeParams, Fann};
//!
//! fn main() {
//!    // Create a new network with two input neurons and one output neuron.
//!    let mut fann = Fann::new_shortcut(&[2, 1]).unwrap();
//!    // Use the default cascade training parameters, but a higher weight multiplier:
//!    fann.set_cascade_params(&CascadeParams {
//!                                 weight_multiplier: 0.6,
//!                                 ..CascadeParams::default()
//!                             });
//!    // Add up to 50 neurons, displaying progress information after each.
//!    // Stop when the network's error on the training data drops to 0.001.
//!    let max_neurons = 50;
//!    let neurons_between_reports = 1;
//!    let desired_error = 0.001;
//!    // Train directly on data loaded from the file "xor.data".
//!    fann.on_file("test_files/xor.data")
//!        .with_reports(neurons_between_reports)
//!        .cascade()
//!        .train(max_neurons, desired_error).unwrap();
//!    // The network now approximates the XOR problem:
//!    assert!(fann.run(&[-1.0,  1.0]).unwrap()[0] > 0.9);
//!    assert!(fann.run(&[ 1.0, -1.0]).unwrap()[0] > 0.9);
//!    assert!(fann.run(&[ 1.0,  1.0]).unwrap()[0] < 0.1);
//!    assert!(fann.run(&[-1.0, -1.0]).unwrap()[0] < 0.1);
//! }
//! ```

extern crate libc;
extern crate fann_sys;

use fann_sys::*;
use libc::{c_float, c_int, c_uint};
use std::cell::RefCell;
use std::ffi::CString;
use std::mem::{forget, transmute};
use std::path::Path;
use std::ptr::{copy_nonoverlapping, null_mut};

pub use activation_func::ActivationFunc;
pub use error::{FannError, FannErrorType, FannResult};
pub use error_func::ErrorFunc;
pub use cascade_params::CascadeParams;
pub use net_type::NetType;
pub use stop_func::StopFunc;
pub use train_algorithm::{BatchParams, IncrementalParams, QuickpropParams, RpropParams};
pub use train_algorithm::TrainAlgorithm;
pub use train_data::TrainData;

mod activation_func;
mod error;
mod error_func;
mod cascade_params;
mod net_type;
mod stop_func;
mod train_algorithm;
mod train_data;

/// The type of weights, inputs and outputs in a neural network. It is defined as `c_float` by
/// default, and as `c_double` if the `double` feature is configured.
pub type FannType = fann_type;

pub type Connection = fann_connection;

/// Convert a path to a `CString`.
fn to_filename<P: AsRef<Path>>(path: P) -> Result<CString, FannError> {
    match path.as_ref().to_str().map(CString::new) {
        None => Err(FannError {
                    error_type: FannErrorType::CantOpenTdR,
                    error_str: "File name contains invalid unicode characters".to_owned(),
                }),
        Some(Err(e)) => Err(FannError {
                            error_type: FannErrorType::CantOpenTdR,
                            error_str: format!("File name contains a nul byte at position {}",
                                               e.nul_position()),
                        }),
        Some(Ok(cs)) => Ok(cs),
    }
}

/// Either an owned or a borrowed `TrainData`.
enum CurrentTrainData<'a> {
    Own(FannResult<TrainData>),
    Ref(&'a TrainData),
}

// Thread-local container for a pointer to the current FannTrainer.
// This is necessary because the raw fann_train_on_data_with_callback C function takes a function
// pointer and not a closure. So instead of the user-supplied function we pass a function to it
// which will call the callback stored in the trainer.
// The 'static lifetime is a lie! But the trainer lives longer than the train method runs, and
// afterwards resets this pointer to null again.
thread_local!(static TRAINER: RefCell<*mut FannTrainer<'static>> = RefCell::new(null_mut()));

#[derive(Clone, Copy, Debug)]
pub enum CallbackResult {
    Stop,
    Continue,
}

impl CallbackResult {
    pub fn stop_if(condition: bool) -> CallbackResult {
        if condition { CallbackResult::Stop } else { CallbackResult::Continue }
    }
}

/// A training configuration. Create this with `Fann::on_data` or `Fann::on_file` and run the
/// training with `train`.
pub struct FannTrainer<'a> {
    fann: &'a mut Fann,
    cur_data: CurrentTrainData<'a>,
    callback: Option<&'a Fn(&Fann, &TrainData, c_uint) -> CallbackResult>,
    interval: c_uint,
    cascade: bool,
}

impl<'a> FannTrainer<'a> {
    fn with_data<'b>(fann: &'b mut Fann, data: &'b TrainData) -> FannTrainer<'b> {
        FannTrainer {
            fann: fann,
            cur_data: CurrentTrainData::Ref(data),
            callback: None,
            interval: 0,
            cascade: false,
        }
    }

    fn with_file<P: AsRef<Path>>(fann: &mut Fann, path: P) -> FannTrainer {
        FannTrainer {
            fann: fann,
            cur_data: CurrentTrainData::Own(TrainData::from_file(path)),
            callback: None,
            interval: 0,
            cascade: false,
        }
    }

    /// Activates printing reports periodically. Between two reports, `interval` neurons are added
    /// (for cascade training) or training goes on for `interval` epochs (otherwise).
    pub fn with_reports(self, interval: c_uint) -> FannTrainer<'a> {
        FannTrainer { interval: interval, ..self }
    }

    /// Configures a callback to be called periodically during training. Every `interval` epochs
    /// (for regular training) or every time `interval` new neurons have been added (for cascade
    /// training), the callback runs. It receives as arguments:
    ///
    /// * a reference to the current `Fann`,
    /// * a reference to the training data,
    /// * the number of steps (added neurons or epochs) taken so far.
    pub fn with_callback(self,
                         interval: c_uint,
                         callback: &'a Fn(&Fann, &TrainData, c_uint) -> CallbackResult)
            -> FannTrainer<'a> {
        FannTrainer { callback: Some(callback), interval: interval, ..self }
    }

    /// Use the Cascade2 algorithm: This adds neurons to the neural network while training, starting
    /// with an ANN without any hidden layers. The network should use shortcut connections, so it
    /// needs to be created like this:
    ///
    /// ```
    /// let td = fann::TrainData::from_file("test_files/xor.data").unwrap();
    /// let fann = fann::Fann::new_shortcut(&[td.num_input(), td.num_output()]).unwrap();
    /// ```
    pub fn cascade(self) -> FannTrainer<'a> {
        FannTrainer { cascade: true, ..self }
    }

    extern "C" fn raw_callback(ann: *mut fann,
                               td: *mut fann_train_data,
                               _: c_uint,
                               _: c_uint,
                               _: c_float,
                               steps: c_uint) -> c_int {
        // TODO: This is an ugly hack - find better ways to solve the following issues:
        // * The C callback is not a closure, so it cannot access the user-supplied argument.
        //   https://aatch.github.io/blog/2015/01/17/unboxed-closures-and-ffi-callbacks doesn't
        //   work here because the C callback doesn't take a user-defined pointer as an argument.
        //   Instead, we store a pointer to the FannTrainer, which contains a fat pointer to the
        //   callback, in a thread-local variable that is accessed by the raw callback.
        // * The lifetime isn't known at the point where the thread-local variable is declared, so
        //   we just use 'static and transmute the pointer!
        // * The C callback is only given pointers to the raw structs, not to self and data. We
        //   read these from the tread-local variable, too, and assert that they correspond to the
        //   given raw structs.
        // * https://github.com/rust-lang/rust/issues/24010 seems to make it impossible to define a
        //   trait that would act as a shortcut for Fn(...) -> CallbackResult.
        match TRAINER.with(|cell| unsafe {
            let trainer = *cell.borrow();
            let data = (*trainer).get_data().unwrap();
            assert_eq!(ann, (*trainer).fann.raw);
            assert_eq!(td, data.get_raw());
            let callback = (*trainer).callback.unwrap();
            callback((*trainer).fann, data, steps)
        }) {
            CallbackResult::Stop      => -1,
            CallbackResult::Continue  =>  0,
        }
    }

    fn get_data(&'a self) -> FannResult<&'a TrainData> {
        match self.cur_data {
            CurrentTrainData::Own(Ok(ref data)) => Ok(&data),
            CurrentTrainData::Own(Err(ref err)) => Err(err.clone()),
            CurrentTrainData::Ref(ref data) => Ok(data),
        }
    }

    /// Train the network until either the mean square error drops below the `desired_error`, or
    /// the maximum number of steps is reached. If cascade training is activated, `max_steps`
    /// refers to the number of neurons that are added, otherwise it is the maximum number of
    /// training epochs.
    pub fn train(&mut self, max_steps: c_uint, desired_error: c_float) -> FannResult<()> {
        unsafe {
            let raw_data = try!(self.get_data()).get_raw();
            if self.callback.is_some() {
                TRAINER.with(|cell| *cell.borrow_mut() = transmute(&mut *self));
                fann_set_callback(self.fann.raw, Some(FannTrainer::raw_callback));
            }
            let raw_train_fn =
                if self.cascade { fann_cascadetrain_on_data } else { fann_train_on_data };
            raw_train_fn(self.fann.raw, raw_data, max_steps, self.interval, desired_error);
            if self.callback.is_some() {
                fann_set_callback(self.fann.raw, None);
                TRAINER.with(|cell| *cell.borrow_mut() = null_mut());
            }
            FannError::check_no_error(self.fann.raw as *mut fann_error)
        }
    }
}

pub struct Fann {
    // We don't consider setting and clearing the error string and number a mutation, and every
    // method should leave these fields cleared, either because it succeeded or because it read the
    // fields and returned the corresponding error.
    // We also don't consider writing the output data a mutation, as we don't provide access to it
    // and copy it before returning it.
    raw: *mut fann,
}

impl Fann {
    unsafe fn from_raw(raw: *mut fann) -> FannResult<Fann> {
        try!(FannError::check_no_error(raw as *mut fann_error));
        Ok(Fann { raw: raw })
    }

    /// Create a fully connected neural network.
    ///
    /// There will be a bias neuron in each layer except the output layer,
    /// and this bias neuron will be connected to all neurons in the next layer.
    /// When running the network, the bias nodes always emit 1.
    ///
    /// # Arguments
    ///
    /// * `layers` - Specifies the number of neurons in each layer, starting with the input and
    ///              ending with the output layer.
    ///
    /// # Example
    ///
    /// ```
    /// // Creating a network with 2 input neurons, 1 output neuron,
    /// // and two hidden layers with 8 and 9 neurons.
    /// let layers = [2, 8, 9, 1];
    /// fann::Fann::new(&layers).unwrap();
    /// ```
    pub fn new(layers: &[c_uint]) -> FannResult<Fann> {
        Fann::new_sparse(1.0, layers)
    }

    /// Create a neural network that is not necessarily fully connected.
    ///
    /// There will be a bias neuron in each layer except the output layer,
    /// and this bias neuron will be connected to all neurons in the next layer.
    /// When running the network, the bias nodes always emit 1.
    ///
    /// # Arguments
    ///
    /// * `connection_rate` - The share of pairs of neurons in consecutive layers that will be
    ///                       connected.
    /// * `layers`          - Specifies the number of neurons in each layer, starting with the input
    ///                       and ending with the output layer.
    pub fn new_sparse(connection_rate: c_float, layers: &[c_uint]) -> FannResult<Fann> {
        unsafe {
            Fann::from_raw(fann_create_sparse_array(connection_rate,
                                                    layers.len() as c_uint,
                                                    layers.as_ptr()))
        }
    }

    /// Create a neural network which has shortcut connections, i. e. it doesn't connect only each
    /// layer to its successor, but every layer with every later layer: Each neuron has connections
    /// to all neurons in all subsequent layers.
    pub fn new_shortcut(layers: &[c_uint]) -> FannResult<Fann> {
        unsafe {
            Fann::from_raw(fann_create_shortcut_array(layers.len() as c_uint, layers.as_ptr()))
        }
    }

    /// Read a neural network from a file.
    pub fn from_file<P: AsRef<Path>>(path: P) -> FannResult<Fann> {
        let filename = try!(to_filename(path));
        unsafe {
            Fann::from_raw(fann_create_from_file(filename.as_ptr()))
        }
    }

    /// Save the network to a configuration file.
    ///
    /// The file will contain all information about the neural network, except parameters generated
    /// during training, like mean square error and the bit fail limit.
    pub fn save<P: AsRef<Path>>(&self, path: P) -> FannResult<()> {
        let filename = try!(to_filename(path));
        unsafe {
            let result = fann_save(self.raw, filename.as_ptr());
            FannError::check_zero(result, self.raw as *mut fann_error, "Error saving network")
        }
    }

    /// Give each connection a random weight between `min_weight` and `max_weight`.
    ///
    /// By default, weights in a new network are random between -0.1 and 0.1.
    pub fn randomize_weights(&mut self, min_weight: FannType, max_weight: FannType) {
        unsafe { fann_randomize_weights(self.raw, min_weight, max_weight) }
    }

    /// Initialize the weights using Widrow & Nguyen's algorithm.
    ///
    /// The algorithm developed by Derrick Nguyen and Bernard Widrow sets the weight in a way that
    /// can speed up training with the given training data. This technique is not always successful
    /// and in some cases can even be less efficient that a purely random initialization.
    pub fn init_weights(&mut self, train_data: &TrainData) {
        unsafe { fann_init_weights(self.raw, train_data.get_raw()) }
    }

    /// Print the connections of the network in a compact matrix, for easy viewing of its
    /// internals.
    ///
    /// The output on a small (2 2 1) network trained on the xor problem:
    ///
    /// ```text
    /// Layer / Neuron 012345
    /// L   1 / N    3 BBa...
    /// L   1 / N    4 BBA...
    /// L   1 / N    5 ......
    /// L   2 / N    6 ...BBA
    /// L   2 / N    7 ......
    /// ```
    ///
    /// This network has five real neurons and two bias neurons. This gives a total of seven
    /// neurons named from 0 to 6. The connections between these neurons can be seen in the matrix.
    /// "." is a place where there is no connection, while a character tells how strong the
    /// connection is on a scale from a-z. The two real neurons in the hidden layer (neuron 3 and 4
    /// in layer 1) have connections from the three neurons in the previous layer as is visible in
    /// the first two lines. The output neuron 6 has connections from the three neurons in the
    /// hidden layer 3 - 5 as is visible in the fourth line.
    ///
    /// To simplify the matrix output neurons are not visible as neurons that connections can come
    /// from, and input and bias neurons are not visible as neurons that connections can go to.
    pub fn print_connections(&self) {
        unsafe { fann_print_connections(self.raw) }
    }

    /// Print all parameters and options of the network.
    pub fn print_parameters(&self) {
        unsafe { fann_print_parameters(self.raw) }
    }

    /// Return an `Err` if the size of the slice does not match the number of input neurons,
    /// otherwise `Ok(())`.
    fn check_input_size(&self, input: &[FannType]) -> FannResult<()> {
        let num_input = self.get_num_input() as usize;
        if input.len() == num_input {
            Ok(())
        } else {
            Err(FannError {
                error_type: FannErrorType::IndexOutOfBound,
                error_str: format!("Input has length {}, but there are {} input neurons",
                                   input.len(), num_input),
            })
        }
    }

    /// Return an `Err` if the size of the slice does not match the number of output neurons,
    /// otherwise `Ok(())`.
    fn check_output_size(&self, output: &[FannType]) -> FannResult<()> {
        let num_output = self.get_num_output() as usize;
        if output.len() == num_output {
            Ok(())
        } else {
            Err(FannError {
                error_type: FannErrorType::IndexOutOfBound,
                error_str: format!("Output has length {}, but there are {} output neurons",
                                   output.len(), num_output),
            })
        }
    }

    /// Train with a single pair of input and output. This is always incremental training (see
    /// `TrainAlg`), since only one pattern is presented.
    pub fn train(&mut self, input: &[FannType], desired_output: &[FannType]) -> FannResult<()> {
        unsafe {
            try!(self.check_input_size(input));
            try!(self.check_output_size(desired_output));
            fann_train(self.raw, input.as_ptr(), desired_output.as_ptr());
            try!(FannError::check_no_error(self.raw as *mut fann_error));
        }
        Ok(())
    }

    /// Create a training configuration for the given data set.
    pub fn on_data<'a>(&'a mut self, data: &'a TrainData) -> FannTrainer<'a> {
        FannTrainer::with_data(self, data)
    }

    /// Create a training configuration, reading the training data from the given file.
    pub fn on_file<P: AsRef<Path>>(&mut self, path: P) -> FannTrainer {
        FannTrainer::with_file(self, path)
    }

    /// Train one epoch with a set of training data, i. e. each sample from the training data is
    /// considered exactly once.
    ///
    /// Returns the mean square error as it is calculated either before or during the actual
    /// training. This is not the actual MSE after the training epoch, but since calculating this
    /// will require to go through the entire training set once more, it is more than adequate to
    /// use this value during training.
    pub fn train_epoch(&mut self, data: &TrainData) -> FannResult<c_float> {
        unsafe {
            let mse = fann_train_epoch(self.raw, data.get_raw());
            try!(FannError::check_no_error(self.raw as *mut fann_error));
            Ok(mse)
        }
    }

    /// Test with a single pair of input and output. This operation updates the mean square error
    /// but does not change the network.
    ///
    /// Returns the actual output of the network.
    pub fn test(&mut self, input: &[FannType], desired_output: &[FannType])
            -> FannResult<Vec<FannType>> {
        try!(self.check_input_size(input));
        try!(self.check_output_size(desired_output));
        let num_output = self.get_num_output() as usize;
        let mut result = Vec::with_capacity(num_output);
        unsafe {
            let output = fann_test(self.raw, input.as_ptr(), desired_output.as_ptr());
            try!(FannError::check_no_error(self.raw as *mut fann_error));
            copy_nonoverlapping(output, result.as_mut_ptr(), num_output);
            result.set_len(num_output);
        }
        Ok(result)
    }

    /// Test with a training data set and calculate the mean square error.
    pub fn test_data(&mut self, data: &TrainData) -> FannResult<c_float> {
        unsafe {
            let mse = fann_test_data(self.raw, data.get_raw());
            try!(FannError::check_no_error(self.raw as *mut fann_error));
            Ok(mse)
        }
    }

    /// Get the mean square error.
    pub fn get_mse(&self) -> c_float {
        unsafe { fann_get_MSE(self.raw) }
    }

    /// Get the number of fail bits, i. e. the number of neurons which differed from the desired
    /// output by more than the bit fail limit since the previous reset.
    pub fn get_bit_fail(&self) -> c_uint {
        unsafe { fann_get_bit_fail(self.raw) }
    }

    /// Reset the mean square error and bit fail count.
    pub fn reset_mse_and_bit_fail(&mut self) {
        unsafe { fann_reset_MSE(self.raw); }
    }

    /// Run the input through the neural network and returns the output. The length of the input
    /// must equal the number of input neurons and the length of the output will equal the number
    /// of output neurons.
    pub fn run(&self, input: &[FannType]) -> FannResult<Vec<FannType>> {
        try!(self.check_input_size(input));
        let num_output = self.get_num_output() as usize;
        let mut result = Vec::with_capacity(num_output);
        unsafe {
            let output = fann_run(self.raw, input.as_ptr());
            try!(FannError::check_no_error(self.raw as *mut fann_error));
            copy_nonoverlapping(output, result.as_mut_ptr(), num_output);
            result.set_len(num_output);
        }
        Ok(result)
    }

    /// Get the number of input neurons.
    pub fn get_num_input(&self) -> c_uint {
        unsafe { fann_get_num_input(self.raw) }
    }

    /// Get the number of output neurons.
    pub fn get_num_output(&self) -> c_uint {
        unsafe { fann_get_num_output(self.raw) }
    }

    /// Get the total number of neurons, including the bias neurons.
    ///
    /// E. g. a 2-4-2 network has 3 + 5 + 2 = 10 neurons (because two layers have bias neurons).
    pub fn get_total_neurons(&self) -> c_uint {
        unsafe { fann_get_total_neurons(self.raw) }
    }

    /// Get the total number of connections.
    pub fn get_total_connections(&self) -> c_uint {
        unsafe { fann_get_total_connections(self.raw) }
    }

    /// Get the type of the neural network.
    pub fn get_network_type(&self) -> NetType {
        let nt_enum = unsafe { fann_get_network_type(self.raw) };
        NetType::from_nettype_enum(nt_enum)
    }

    /// Get the connection rate used when the network was created.
    pub fn get_connection_rate(&self) -> c_float {
        unsafe { fann_get_connection_rate(self.raw) }
    }

    /// Get the number of layers in the network.
    pub fn get_num_layers(&self) -> c_uint {
        unsafe { fann_get_num_layers(self.raw) }
    }

    /// Get the number of neurons in each layer of the network.
    pub fn get_layer_sizes(&self) -> Vec<c_uint> {
        let num_layers = self.get_num_layers() as usize;
        let mut result = Vec::with_capacity(num_layers);
        unsafe {
            fann_get_layer_array(self.raw, result.as_mut_ptr());
            result.set_len(num_layers);
        }
        result
    }

    /// Get the number of bias neurons in each layer of the network.
    pub fn get_bias_counts(&self) -> Vec<c_uint> {
        let num_layers = self.get_num_layers() as usize;
        let mut result = Vec::with_capacity(num_layers);
        unsafe {
            fann_get_bias_array(self.raw, result.as_mut_ptr());
            result.set_len(num_layers);
        }
        result
    }

    /// Get a list of all connections in the network.
    pub fn get_connections(&self) -> Vec<Connection> {
        let total = self.get_total_connections() as usize;
        let mut result = Vec::with_capacity(total);
        unsafe {
            fann_get_connection_array(self.raw, result.as_mut_ptr());
            result.set_len(total);
        }
        result
    }

    /// Set the weights of all given connections.
    ///
    /// Connections that don't already exist are ignored.
    pub fn set_connections<'a, I: IntoIterator<Item = &'a Connection>>(&mut self, connections: I) {
        for c in connections {
            self.set_weight(c.from_neuron, c.to_neuron, c.weight);
        }
    }

    /// Set the weight of the given connection.
    pub fn set_weight(&mut self, from_neuron: c_uint, to_neuron: c_uint, weight: FannType) {
        unsafe { fann_set_weight(self.raw, from_neuron, to_neuron, weight) }
    }

    /// Get the activation function for neuron number `neuron` in layer number `layer`, counting
    /// the input layer as number 0. Input layer neurons do not have an activation function, so
    /// `layer` must be at least 1.
    pub fn get_activation_func(&self, layer: c_int, neuron: c_int) -> FannResult<ActivationFunc> {
        let af_enum = unsafe { fann_get_activation_function(self.raw, layer, neuron) };
        unsafe { try!(FannError::check_no_error(self.raw as *mut fann_error)) };
        ActivationFunc::from_fann_activationfunc_enum(af_enum)
    }

    /// Set the activation function for neuron number `neuron` in layer number `layer`, counting
    /// the input layer as number 0. Input layer neurons do not have an activation function, so
    /// `layer` must be at least 1.
    pub fn set_activation_func(&mut self, af: ActivationFunc, layer: c_int, neuron: c_int) {
        let af_enum = af.to_fann_activationfunc_enum();
        unsafe { fann_set_activation_function(self.raw, af_enum, layer, neuron) }
    }

    /// Set the activation function for all hidden layers.
    pub fn set_activation_func_hidden(&mut self, activation_func: ActivationFunc) {
        unsafe {
            let af_enum = activation_func.to_fann_activationfunc_enum();
            fann_set_activation_function_hidden(self.raw, af_enum);
        }
    }

    /// Set the activation function for the output layer.
    pub fn set_activation_func_output(&mut self, activation_func: ActivationFunc) {
        unsafe {
            let af_enum = activation_func.to_fann_activationfunc_enum();
            fann_set_activation_function_output(self.raw, af_enum)
        }
    }

    /// Get the activation steepness for neuron number `neuron` in layer number `layer`.
    pub fn get_activation_steepness(&self, layer: c_int, neuron: c_int) -> Option<FannType> {
        let steepness = unsafe { fann_get_activation_steepness(self.raw, layer, neuron) };
        match steepness {
            -1.0 => None,
            s    => Some(s),
        }
    }

    /// Set the activation steepness for neuron number `neuron` in layer number `layer`, counting
    /// the input layer as number 0. Input layer neurons do not have an activation steepness, so
    /// layer must be at least 1.
    ///
    /// The steepness determines how fast the function goes from minimum to maximum. A higher value
    /// will result in more aggressive training.
    ///
    /// A steep activation function is adequate if outputs are binary, e. e. they are supposed to
    /// be either almost 0 or almost 1.
    ///
    /// The default value is 0.5.
    pub fn set_activation_steepness(&self, steepness: FannType, layer: c_int, neuron: c_int) {
        unsafe { fann_set_activation_steepness(self.raw, steepness, layer, neuron) }
    }

    /// Set the activation steepness for layer number `layer`.
    pub fn set_activation_steepness_layer(&self, steepness: FannType, layer: c_int) {
        unsafe { fann_set_activation_steepness_layer(self.raw, steepness, layer) }
    }

    /// Set the activation steepness for all hidden layers.
    pub fn set_activation_steepness_hidden(&self, steepness: FannType) {
        unsafe { fann_set_activation_steepness_hidden(self.raw, steepness) }
    }

    /// Set the activation steepness for the output layer.
    pub fn set_activation_steepness_output(&self, steepness: FannType) {
        unsafe { fann_set_activation_steepness_output(self.raw, steepness) }
    }

    /// Get the error function used during training.
    pub fn get_error_func(&self) -> ErrorFunc {
        let ef_enum = unsafe { fann_get_train_error_function(self.raw) };
        ErrorFunc::from_errorfunc_enum(ef_enum)
    }

    /// Set the error function used during training.
    ///
    /// The default is `Tanh`.
    pub fn set_error_func(&mut self, ef: ErrorFunc) {
        let ef_enum = ef.to_errorfunc_enum();
        unsafe { fann_set_train_error_function(self.raw, ef_enum) }
    }

    /// Get the stop criterion for training.
    pub fn get_stop_func(&self) -> StopFunc {
        let sf_enum = unsafe { fann_get_train_stop_function(self.raw) };
        StopFunc::from_stopfunc_enum(sf_enum)
    }

    /// Set the stop criterion for training.
    ///
    /// The default is `Mse`.
    pub fn set_stop_func(&mut self, sf: StopFunc) {
        let sf_enum = sf.to_stopfunc_enum();
        unsafe { fann_set_train_stop_function(self.raw, sf_enum) }
    }

    /// Get the bit fail limit.
    pub fn get_bit_fail_limit(&self) -> FannType {
        unsafe { fann_get_bit_fail_limit(self.raw) }
    }

    /// Set the bit fail limit.
    ///
    /// Each output neuron value that differs from the desired output by more than the bit fail
    /// limit is counted as a failed bit.
    pub fn set_bit_fail_limit(&mut self, bit_fail_limit: FannType) {
        unsafe { fann_set_bit_fail_limit(self.raw, bit_fail_limit) }
    }

    /// Get cascade training parameters.
    pub fn get_cascade_params(&self) -> CascadeParams {
        unsafe {
            let num_af = fann_get_cascade_activation_functions_count(self.raw) as usize;
            let af_enum_ptr = fann_get_cascade_activation_functions(self.raw);
            let af_enums = Vec::from_raw_parts(af_enum_ptr, num_af, num_af);
            let activation_functions = af_enums.iter().map(|&af_enum|
                ActivationFunc::from_fann_activationfunc_enum(af_enum).unwrap()).collect();
            forget(af_enums);
            let num_st = fann_get_cascade_activation_steepnesses_count(self.raw) as usize;
            let mut activation_steepnesses = Vec::with_capacity(num_st);
            let st_ptr = fann_get_cascade_activation_steepnesses(self.raw);
            copy_nonoverlapping(st_ptr, activation_steepnesses.as_mut_ptr(), num_st);
            activation_steepnesses.set_len(num_st);
            CascadeParams {
                output_change_fraction: fann_get_cascade_output_change_fraction(self.raw),
                output_stagnation_epochs: fann_get_cascade_output_stagnation_epochs(self.raw),
                candidate_change_fraction: fann_get_cascade_candidate_change_fraction(self.raw),
                candidate_stagnation_epochs: fann_get_cascade_candidate_stagnation_epochs(self.raw),
                candidate_limit: fann_get_cascade_candidate_limit(self.raw),
                weight_multiplier: fann_get_cascade_weight_multiplier(self.raw),
                max_out_epochs: fann_get_cascade_max_out_epochs(self.raw),
                max_cand_epochs: fann_get_cascade_max_cand_epochs(self.raw),
                activation_functions: activation_functions,
                activation_steepnesses: activation_steepnesses,
                num_candidate_groups: fann_get_cascade_num_candidate_groups(self.raw),
            }
        }
    }

    /// Set cascade training parameters.
    pub fn set_cascade_params(&mut self, params: &CascadeParams) {
        let af_enums: Vec<_> = params.activation_functions.iter().map(|af|
            af.to_fann_activationfunc_enum()).collect();
        unsafe {
            fann_set_cascade_output_change_fraction(self.raw, params.output_change_fraction);
            fann_set_cascade_output_stagnation_epochs(self.raw, params.output_stagnation_epochs);
            fann_set_cascade_candidate_change_fraction(self.raw, params.candidate_change_fraction);
            fann_set_cascade_candidate_stagnation_epochs(self.raw,
                                                         params.candidate_stagnation_epochs);
            fann_set_cascade_candidate_limit(self.raw, params.candidate_limit);
            fann_set_cascade_weight_multiplier(self.raw, params.weight_multiplier);
            fann_set_cascade_max_out_epochs(self.raw, params.max_out_epochs);
            fann_set_cascade_max_cand_epochs(self.raw, params.max_cand_epochs);
            fann_set_cascade_activation_functions(self.raw,
                                                  af_enums.as_ptr(),
                                                  af_enums.len() as c_uint);
            fann_set_cascade_activation_steepnesses(self.raw,
                                                    params.activation_steepnesses.as_ptr(),
                                                    params.activation_steepnesses.len() as c_uint);
            fann_set_cascade_num_candidate_groups(self.raw, params.num_candidate_groups);
        }
    }

    /// Get the currently configured training algorithm.
    pub fn get_train_algorithm(&self) -> TrainAlgorithm {
        let ft_enum = unsafe { fann_get_training_algorithm(self.raw) };
        match ft_enum {
            FANN_TRAIN_INCREMENTAL => unsafe {
                TrainAlgorithm::Incremental(IncrementalParams {
                    learning_momentum: fann_get_learning_momentum(self.raw),
                    learning_rate: fann_get_learning_rate(self.raw),
                })
            },
            FANN_TRAIN_BATCH       => unsafe {
                TrainAlgorithm::Batch(BatchParams {
                    learning_rate: fann_get_learning_rate(self.raw),
                })
            },
            FANN_TRAIN_RPROP       => unsafe {
                TrainAlgorithm::Rprop(RpropParams {
                    decrease_factor: fann_get_rprop_decrease_factor(self.raw),
                    increase_factor: fann_get_rprop_increase_factor(self.raw),
                    delta_min: fann_get_rprop_delta_min(self.raw),
                    delta_max: fann_get_rprop_delta_max(self.raw),
                    delta_zero: fann_get_rprop_delta_zero(self.raw),
                })
            },
            FANN_TRAIN_QUICKPROP   => unsafe {
                TrainAlgorithm::Quickprop(QuickpropParams {
                    decay: fann_get_quickprop_decay(self.raw),
                    mu: fann_get_quickprop_mu(self.raw),
                    learning_rate: fann_get_learning_rate(self.raw),
                })
            },
        }
    }

    /// Set the algorithm to be used for training.
    pub fn set_train_algorithm(&mut self, ta: TrainAlgorithm) {
        match ta {
            TrainAlgorithm::Incremental(params) => unsafe {
                fann_set_training_algorithm(self.raw, FANN_TRAIN_INCREMENTAL);
                fann_set_learning_momentum(self.raw, params.learning_momentum);
                fann_set_learning_rate(self.raw, params.learning_rate);
            },
            TrainAlgorithm::Batch(params) => unsafe {
                fann_set_training_algorithm(self.raw, FANN_TRAIN_BATCH);
                fann_set_learning_rate(self.raw, params.learning_rate);
            },
            TrainAlgorithm::Rprop(params) => unsafe {
                fann_set_training_algorithm(self.raw, FANN_TRAIN_RPROP);
                fann_set_rprop_decrease_factor(self.raw, params.decrease_factor);
                fann_set_rprop_increase_factor(self.raw, params.increase_factor);
                fann_set_rprop_delta_min(self.raw, params.delta_min);
                fann_set_rprop_delta_max(self.raw, params.delta_max);
                fann_set_rprop_delta_zero(self.raw, params.delta_zero);
            },
            TrainAlgorithm::Quickprop(params) => unsafe {
                fann_set_training_algorithm(self.raw, FANN_TRAIN_QUICKPROP);
                fann_set_quickprop_decay(self.raw, params.decay);
                fann_set_quickprop_mu(self.raw, params.mu);
                fann_set_learning_rate(self.raw, params.learning_rate);
            },
        }
    }

    /// Calculate input scaling parameters for future use based on the given training data.
    pub fn set_input_scaling_params(&mut self,
                                    data: &TrainData,
                                    new_input_min: c_float,
                                    new_input_max: c_float) -> FannResult<()> {
        unsafe {
            let result = fann_set_input_scaling_params(self.raw,
                                                       data.get_raw(),
                                                       new_input_min,
                                                       new_input_max);
            FannError::check_zero(result, self.raw as *mut fann_error,
                                  "Error calculating scaling parameters")
        }
    }

    /// Calculate output scaling parameters for future use based on the given training data.
    pub fn set_output_scaling_params(&mut self,
                                    data: &TrainData,
                                    new_output_min: c_float,
                                    new_output_max: c_float) -> FannResult<()> {
        unsafe {
            let result = fann_set_output_scaling_params(self.raw,
                                                       data.get_raw(),
                                                       new_output_min,
                                                       new_output_max);
            FannError::check_zero(result, self.raw as *mut fann_error,
                                  "Error calculating scaling parameters")
        }
    }

    /// Calculate scaling parameters for future use based on the given training data.
    pub fn set_scaling_params(&mut self,
                                    data: &TrainData,
                                    new_input_min: c_float,
                                    new_input_max: c_float,
                                    new_output_min: c_float,
                                    new_output_max: c_float) -> FannResult<()> {
        unsafe {
            let result = fann_set_scaling_params(self.raw,
                                                       data.get_raw(),
                                                       new_input_min,
                                                       new_input_max,
                                                       new_output_min,
                                                       new_output_max);
            FannError::check_zero(result, self.raw as *mut fann_error,
                                  "Error calculating scaling parameters")
        }
    }

    /// Clear scaling parameters.
    pub fn clear_scaling_params(&mut self) -> FannResult<()> {
        unsafe {
            FannError::check_zero(fann_clear_scaling_params(self.raw),
                                  self.raw as *mut fann_error,
                                  "Error clearing scaling parameters")
        }
    }

    /// Scale data in input vector before feeding it to the network, based on previously calculated
    /// parameters.
    pub fn scale_input(&self, input: &mut [FannType]) -> FannResult<()> {
        unsafe {
            fann_scale_input(self.raw, input.as_mut_ptr());
            FannError::check_no_error(self.raw as *mut fann_error)
        }
    }

    /// Scale data in output vector before feeding it to the network, based on previously calculated
    /// parameters.
    pub fn scale_output(&self, output: &mut [FannType]) -> FannResult<()> {
        unsafe {
            fann_scale_output(self.raw, output.as_mut_ptr());
            FannError::check_no_error(self.raw as *mut fann_error)
        }
    }

    /// Descale data in input vector after feeding it to the network, based on previously calculated
    /// parameters.
    pub fn descale_input(&self, input: &mut [FannType]) -> FannResult<()> {
        unsafe {
            fann_descale_input(self.raw, input.as_mut_ptr());
            FannError::check_no_error(self.raw as *mut fann_error)
        }
    }

    /// Descale data in output vector after getting it from the network, based on previously
    /// calculated parameters.
    pub fn descale_output(&self, output: &mut [FannType]) -> FannResult<()> {
        unsafe {
            fann_descale_output(self.raw, output.as_mut_ptr());
            FannError::check_no_error(self.raw as *mut fann_error)
        }
    }

    // TODO: set_error_log: Always disable, due to different error handling?
    // TODO: save_to_fixed?
    // TODO: user_data methods?
}

impl Drop for Fann {
    fn drop(&mut self) {
        unsafe { fann_destroy(self.raw); }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use fann_sys;
    use libc::c_uint;
    use std::cell::RefCell;
    use std::ptr::null_mut;

    const EPSILON: FannType = 0.2;

    #[test]
    fn test_tutorial() {
        let max_epochs = 500000;
        let desired_error = 0.0001;
        let mut fann = Fann::new(&[2, 3, 1]).unwrap();
        fann.set_activation_func_hidden(ActivationFunc::SigmoidSymmetric);
        fann.set_activation_func_output(ActivationFunc::SigmoidSymmetric);
        fann.on_file("test_files/xor.data").train(max_epochs, desired_error).unwrap();
        assert!(EPSILON > ( 1.0 - fann.run(&[-1.0,  1.0]).unwrap()[0]).abs());
        assert!(EPSILON > ( 1.0 - fann.run(&[ 1.0, -1.0]).unwrap()[0]).abs());
        assert!(EPSILON > (-1.0 - fann.run(&[ 1.0,  1.0]).unwrap()[0]).abs());
        assert!(EPSILON > (-1.0 - fann.run(&[-1.0, -1.0]).unwrap()[0]).abs());
    }

    #[test]
    fn test_activation_func() {
        let mut fann = Fann::new(&[4, 3, 3, 1]).unwrap();
        // Don't print the expected errors:
        unsafe { fann_sys::fann_set_error_log(fann.raw as *mut fann_sys::fann_error, null_mut()); }
        assert!(fann.get_activation_func(0, 1).is_err());
        assert!(fann.get_activation_func(4, 1).is_err());
        assert_eq!(Ok(ActivationFunc::SigmoidStepwise), fann.get_activation_func(2, 2));
        fann.set_activation_func(ActivationFunc::Sin, 2, 2);
        assert_eq!(Ok(ActivationFunc::Sin), fann.get_activation_func(2, 2));
    }

    #[test]
    fn test_train_algorithm() {
        let mut fann = Fann::new(&[4, 3, 3, 1]).unwrap();
        assert_eq!(TrainAlgorithm::default(), fann.get_train_algorithm());
        let quickprop = TrainAlgorithm::Quickprop(QuickpropParams {
            decay: -0.0002,
            ..Default::default()
        });
        fann.set_train_algorithm(quickprop);
        assert_eq!(quickprop, fann.get_train_algorithm());
    }

    #[test]
    fn test_layer_sizes() {
        let fann = Fann::new(&[4, 3, 3, 1]).unwrap();
        assert_eq!(vec!(4, 3, 3, 1), fann.get_layer_sizes());
        assert_eq!(vec!(1, 1, 1, 0), fann.get_bias_counts());
    }

    #[test]
    fn test_get_set_connections() {
        let mut fann = Fann::new(&[1, 1]).unwrap();
        let connection = Connection { from_neuron: 1, to_neuron: 2, weight: 0.123 };
        fann.set_connections(&[connection]);
        assert_eq!(2, fann.get_total_connections()); // 2 because of the bias neuron in layer 0.
        assert_eq!(connection, fann.get_connections()[1]);
    }

    #[test]
    fn test_cascade_params() {
        let fann = Fann::new(&[1, 1]).unwrap();
        assert_eq!(CascadeParams::default(), fann.get_cascade_params());
    }

    #[test]
    fn test_train_data_from_callback() {
        let mut fann = Fann::new(&[2, 3, 1]).unwrap();
        fann.set_activation_func_hidden(ActivationFunc::SigmoidSymmetric);
        fann.set_activation_func_output(ActivationFunc::SigmoidSymmetric);
        let td = TrainData::from_callback(4, 2, 1, Box::new(|num| match num {
            0 => (vec!(-1.0,  1.0), vec!( 1.0)),
            1 => (vec!( 1.0, -1.0), vec!( 1.0)),
            2 => (vec!(-1.0, -1.0), vec!(-1.0)),
            3 => (vec!( 1.0,  1.0), vec!(-1.0)),
            _ => unreachable!(),
        })).unwrap();
        fann.on_data(&td).train(500000, 0.0001).unwrap();
        assert!(EPSILON > ( 1.0 - fann.run(&[-1.0,  1.0]).unwrap()[0]).abs());
        assert!(EPSILON > ( 1.0 - fann.run(&[ 1.0, -1.0]).unwrap()[0]).abs());
        assert!(EPSILON > (-1.0 - fann.run(&[ 1.0,  1.0]).unwrap()[0]).abs());
        assert!(EPSILON > (-1.0 - fann.run(&[-1.0, -1.0]).unwrap()[0]).abs());
    }

    #[test]
    fn test_train_callback() {
        // Without a hidden layer, the XOR problem cannot be solved, so the training will only stop
        // when the callback says so.
        let mut fann = Fann::new(&[2, 1]).unwrap();
        fann.set_activation_func_output(ActivationFunc::LinearPiece);
        let xor_data = TrainData::from_file("test_files/xor.data").unwrap();
        let raw = fann.raw;
        let callback_epochs = RefCell::new(Vec::new());
        let cb = |fann: &Fann, train_data: &TrainData, epochs: c_uint| {
            assert_eq!(raw, fann.raw);
            unsafe { assert_eq!(xor_data.get_raw(), train_data.get_raw()); }
            callback_epochs.borrow_mut().push(epochs);
            CallbackResult::stop_if(epochs == 40) // Stop after 40 epochs.
        };
        fann.on_data(&xor_data).with_callback(10, &cb).train(100, 0.1).unwrap();
        // The interval was 10 epochs. Also, FANN always runs the callback after the first epoch.
        assert_eq!(vec!(1, 10, 20, 30, 40), *callback_epochs.borrow());
    }
}