1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
//! Raw bindings to C functions of the Fast Artificial Neural Network library //! //! //! # Creation/Execution //! //! The FANN library is designed to be very easy to use. //! A feedforward ANN can be created by a simple `fann_create_standard` function, while //! other ANNs can be created just as easily. The ANNs can be trained by `fann_train_on_file` //! and executed by `fann_run`. //! //! All of this can be done without much knowledge of the internals of ANNs, although the ANNs //! created will still be powerful and effective. If you have more knowledge about ANNs, and desire //! more control, almost every part of the ANNs can be parametrized to create specialized and highly //! optimal ANNs. //! //! //! # Training //! //! There are many different ways of training neural networks and the FANN library supports //! a number of different approaches. //! //! Two fundementally different approaches are the most commonly used: //! //! * Fixed topology training - The size and topology of the ANN is determined in advance //! and the training alters the weights in order to minimize the difference between //! the desired output values and the actual output values. This kind of training is //! supported by `fann_train_on_data`. //! //! * Evolving topology training - The training start out with an empty ANN, only consisting //! of input and output neurons. Hidden neurons and connections are added during training, //! in order to achieve the same goal as for fixed topology training. This kind of training //! is supported by FANN Cascade Training. //! //! //! # Cascade Training //! //! Cascade training differs from ordinary training in the sense that it starts with an empty neural //! network and then adds neurons one by one, while it trains the neural network. The main benefit //! of this approach is that you do not have to guess the number of hidden layers and neurons prior //! to training, but cascade training has also proved better at solving some problems. //! //! The basic idea of cascade training is that a number of candidate neurons are trained separate //! from the real network, then the most promising of these candidate neurons is inserted into the //! neural network. Then the output connections are trained and new candidate neurons are prepared. //! The candidate neurons are created as shortcut connected neurons in a new hidden layer, which //! means that the final neural network will consist of a number of hidden layers with one shortcut //! connected neuron in each. //! //! //! # File Input/Output //! //! It is possible to save an entire ann to a file with `fann_save` for future loading with //! `fann_create_from_file`. //! //! //! # Error Handling //! //! Errors from the FANN library are usually reported on `stderr`. //! It is however possible to redirect these error messages to a file, //! or completely ignore them with the `fann_set_error_log` function. //! //! It is also possible to inspect the last error message by using the //! `fann_get_errno` and `fann_get_errstr` functions. //! //! //! # Datatypes //! //! The two main datatypes used in the FANN library are `fann`, //! which represents an artificial neural network, and `fann_train_data`, //! which represents training data. #![allow(non_camel_case_types)] // TODO: Cross-link the documentation. extern crate libc; pub use fann_errno_enum::*; pub use fann_train_enum::*; pub use fann_activationfunc_enum::*; pub use fann_errorfunc_enum::*; pub use fann_stopfunc_enum::*; pub use fann_nettype_enum::*; use libc::FILE; use libc::{c_char, c_float, c_int, c_uint, c_void}; #[cfg(feature = "double")] type fann_type_internal = libc::c_double; #[cfg(not(feature = "double"))] type fann_type_internal = c_float; /// The type of weights, inputs and outputs in a neural network. In the Rust bindings, it is /// defined as `c_float` by default, and as `c_double`, if the `double` feature is configured. /// /// In the FANN C library, `fann_type` is defined as: /// /// * `float` - if you include fann.h or floatfann.h /// * `double` - if you include doublefann.h /// * `int` - if you include fixedfann.h (only for executing a network, not training). pub type fann_type = fann_type_internal; /// Error events on fann and fann_train_data. #[repr(C)] #[derive(Copy, Clone)] pub enum fann_errno_enum { /// No error FANN_E_NO_ERROR = 0, /// Unable to open configuration file for reading FANN_E_CANT_OPEN_CONFIG_R, /// Unable to open configuration file for writing FANN_E_CANT_OPEN_CONFIG_W, /// Wrong version of configuration file FANN_E_WRONG_CONFIG_VERSION, /// Error reading info from configuration file FANN_E_CANT_READ_CONFIG, /// Error reading neuron info from configuration file FANN_E_CANT_READ_NEURON, /// Error reading connections from configuration file FANN_E_CANT_READ_CONNECTIONS, /// Number of connections not equal to the number expected FANN_E_WRONG_NUM_CONNECTIONS, /// Unable to open train data file for writing FANN_E_CANT_OPEN_TD_W, /// Unable to open train data file for reading FANN_E_CANT_OPEN_TD_R, /// Error reading training data from file FANN_E_CANT_READ_TD, /// Unable to allocate memory FANN_E_CANT_ALLOCATE_MEM, /// Unable to train with the selected activation function FANN_E_CANT_TRAIN_ACTIVATION, /// Unable to use the selected activation function FANN_E_CANT_USE_ACTIVATION, /// Irreconcilable differences between two `fann_train_data` structures FANN_E_TRAIN_DATA_MISMATCH, /// Unable to use the selected training algorithm FANN_E_CANT_USE_TRAIN_ALG, /// Trying to take subset which is not within the training set FANN_E_TRAIN_DATA_SUBSET, /// Index is out of bound FANN_E_INDEX_OUT_OF_BOUND, /// Scaling parameters not present FANN_E_SCALE_NOT_PRESENT, } /// The Training algorithms used when training on `fann_train_data` with functions like /// `fann_train_on_data` or `fann_train_on_file`. The incremental training alters the weights /// after each time it is presented an input pattern, while batch only alters the weights once after /// it has been presented to all the patterns. #[repr(C)] #[derive(Copy, Clone)] pub enum fann_train_enum { /// Standard backpropagation algorithm, where the weights are /// updated after each training pattern. This means that the weights are updated many /// times during a single epoch. For this reason some problems will train very fast with /// this algorithm, while other more advanced problems will not train very well. FANN_TRAIN_INCREMENTAL = 0, /// Standard backpropagation algorithm, where the weights are updated after calculating the mean /// square error for the whole training set. This means that the weights are only updated once /// during an epoch. For this reason some problems will train slower with this algorithm. But /// since the mean square error is calculated more correctly than in incremental training, some /// problems will reach better solutions with this algorithm. FANN_TRAIN_BATCH, /// A more advanced batch training algorithm which achieves good results /// for many problems. The RPROP training algorithm is adaptive, and does therefore not /// use the `learning_rate`. Some other parameters can however be set to change the way the /// RPROP algorithm works, but it is only recommended for users with insight in how the RPROP /// training algorithm works. The RPROP training algorithm is described by /// [Riedmiller and Braun, 1993], but the actual learning algorithm used here is the /// iRPROP- training algorithm which is described by [Igel and Husken, 2000] which /// is a variant of the standard RPROP training algorithm. FANN_TRAIN_RPROP, /// A more advanced batch training algorithm which achieves good results /// for many problems. The quickprop training algorithm uses the `learning_rate` parameter /// along with other more advanced parameters, but it is only recommended to change these /// advanced parameters for users with insight in how the quickprop training algorithm works. /// The quickprop training algorithm is described by [Fahlman, 1988]. FANN_TRAIN_QUICKPROP, } /// The activation functions used for the neurons during training. The activation functions /// can either be defined for a group of neurons by `fann_set_activation_function_hidden` and /// `fann_set_activation_function_output`, or it can be defined for a single neuron by /// `fann_set_activation_function`. /// /// The steepness of an activation function is defined in the same way by /// `fann_set_activation_steepness_hidden`, `fann_set_activation_steepness_output` and /// `fann_set_activation_steepness`. /// /// The functions are described with functions where: /// /// * x is the input to the activation function, /// /// * y is the output, /// /// * s is the steepness and /// /// * d is the derivation. #[repr(C)] #[derive(Copy, Clone)] pub enum fann_activationfunc_enum { /// Neuron does not exist or does not have an activation function. FANN_NONE = -1, /// Linear activation function. /// /// * span: -inf < y < inf /// /// * y = x*s, d = 1*s /// /// * Can NOT be used in fixed point. FANN_LINEAR = 0, /// Threshold activation function. /// /// * x < 0 -> y = 0, x >= 0 -> y = 1 /// /// * Can NOT be used during training. FANN_THRESHOLD, /// Threshold activation function. /// /// * x < 0 -> y = 0, x >= 0 -> y = 1 /// /// * Can NOT be used during training. FANN_THRESHOLD_SYMMETRIC, /// Sigmoid activation function. /// /// * One of the most used activation functions. /// /// * span: 0 < y < 1 /// /// * y = 1/(1 + exp(-2*s*x)) /// /// * d = 2*s*y*(1 - y) FANN_SIGMOID, /// Stepwise linear approximation to sigmoid. /// /// * Faster than sigmoid but a bit less precise. FANN_SIGMOID_STEPWISE, /// Symmetric sigmoid activation function, aka. tanh. /// /// * One of the most used activation functions. /// /// * span: -1 < y < 1 /// /// * y = tanh(s*x) = 2/(1 + exp(-2*s*x)) - 1 /// /// * d = s*(1-(y*y)) FANN_SIGMOID_SYMMETRIC, /// Stepwise linear approximation to symmetric sigmoid. /// /// * Faster than symmetric sigmoid but a bit less precise. FANN_SIGMOID_SYMMETRIC_STEPWISE, /// Gaussian activation function. /// /// * 0 when x = -inf, 1 when x = 0 and 0 when x = inf /// /// * span: 0 < y < 1 /// /// * y = exp(-x*s*x*s) /// /// * d = -2*x*s*y*s FANN_GAUSSIAN, /// Symmetric gaussian activation function. /// /// * -1 when x = -inf, 1 when x = 0 and 0 when x = inf /// /// * span: -1 < y < 1 /// /// * y = exp(-x*s*x*s)*2-1 /// /// * d = -2*x*s*(y+1)*s FANN_GAUSSIAN_SYMMETRIC, /// Stepwise linear approximation to gaussian. /// Faster than gaussian but a bit less precise. /// NOT implemented yet. FANN_GAUSSIAN_STEPWISE, /// Fast (sigmoid like) activation function defined by David Elliott /// /// * span: 0 < y < 1 /// /// * y = ((x*s) / 2) / (1 + |x*s|) + 0.5 /// /// * d = s*1/(2*(1+|x*s|)*(1+|x*s|)) FANN_ELLIOTT, /// Fast (symmetric sigmoid like) activation function defined by David Elliott /// /// * span: -1 < y < 1 /// /// * y = (x*s) / (1 + |x*s|) /// /// * d = s*1/((1+|x*s|)*(1+|x*s|)) FANN_ELLIOTT_SYMMETRIC, /// Bounded linear activation function. /// /// * span: 0 <= y <= 1 /// /// * y = x*s, d = 1*s FANN_LINEAR_PIECE, /// Bounded linear activation function. /// /// * span: -1 <= y <= 1 /// /// * y = x*s, d = 1*s FANN_LINEAR_PIECE_SYMMETRIC, /// Periodical sine activation function. /// /// * span: -1 <= y <= 1 /// /// * y = sin(x*s) /// /// * d = s*cos(x*s) FANN_SIN_SYMMETRIC, /// Periodical cosine activation function. /// /// * span: -1 <= y <= 1 /// /// * y = cos(x*s) /// /// * d = s*-sin(x*s) FANN_COS_SYMMETRIC, /// Periodical sine activation function. /// /// * span: 0 <= y <= 1 /// /// * y = sin(x*s)/2+0.5 /// /// * d = s*cos(x*s)/2 FANN_SIN, /// Periodical cosine activation function. /// /// * span: 0 <= y <= 1 /// /// * y = cos(x*s)/2+0.5 /// /// * d = s*-sin(x*s)/2 FANN_COS, } /// Error function used during training. #[repr(C)] #[derive(Copy, Clone)] pub enum fann_errorfunc_enum { /// Standard linear error function. FANN_ERRORFUNC_LINEAR = 0, /// Tanh error function, usually better but can require a lower learning rate. This error /// function aggressively targets outputs that differ much from the desired, while not targeting /// outputs that only differ a little that much. This activation function is not recommended for /// cascade training and incremental training. FANN_ERRORFUNC_TANH, } /// Stop criteria used during training. #[repr(C)] #[derive(Copy, Clone)] pub enum fann_stopfunc_enum { /// Stop criterion is Mean Square Error (MSE) value. FANN_STOPFUNC_MSE = 0, /// Stop criterion is number of bits that fail. The number of bits means the /// number of output neurons which differ more than the bit fail limit /// (see `fann_get_bit_fail_limit`, `fann_set_bit_fail_limit`). /// The bits are counted in all of the training data, so this number can be higher than /// the number of training data. FANN_STOPFUNC_BIT, } /// Definition of network types used by `fann_get_network_type`. #[repr(C)] #[derive(Copy, Clone)] pub enum fann_nettype_enum { /// Each layer only has connections to the next layer. FANN_NETTYPE_LAYER = 0, /// Each layer has connections to all following layers. FANN_NETTYPE_SHORTCUT, } /// This callback function can be called during training when using `fann_train_on_data`, /// `fann_train_on_file` or `fann_cascadetrain_on_data`. /// /// The callback can be set by using `fann_set_callback` and is very useful for doing custom /// things during training. It is recommended to use this function when implementing custom /// training procedures, or when visualizing the training in a GUI etc. The parameters which the /// callback function takes are the parameters given to `fann_train_on_data`, plus an `epochs` /// parameter which tells how many epochs the training has taken so far. /// /// The callback function should return an integer, if the callback function returns -1, the /// training will terminate. /// /// Example of a callback function: /// /// ``` /// extern crate libc; /// extern crate fann_sys; /// /// use libc::*; /// use fann_sys::*; /// /// extern "C" fn cb(ann: *mut fann, /// train: *mut fann_train_data, /// max_epochs: c_uint, /// epochs_between_reports: c_uint, /// desired_error: c_float, /// epochs: c_uint) -> c_int { /// let mut mse = unsafe { fann_get_MSE(ann) }; /// println!("Epochs: {}. MSE: {}. Desired MSE: {}", epochs, mse, desired_error); /// 0 /// } /// /// fn main() { /// let test_callback: fann_callback_type = Some(cb); /// } /// ``` pub type fann_callback_type = Option<extern "C" fn(ann: *mut fann, train: *mut fann_train_data, max_epochs: c_uint, epochs_between_reports: c_uint, desired_error: c_float, epochs: c_uint) -> c_int>; #[repr(C)] struct fann_neuron { first_con: c_uint, last_con: c_uint, sum: fann_type, value: fann_type, activation_steepness: fann_type, activation_function: fann_activationfunc_enum, } #[repr(C)] struct fann_layer { first_neuron: *mut fann_neuron, last_neuron: *mut fann_neuron, } /// Structure used to store error-related information, both /// `fann` and `fann_train_data` can be cast to this type. /// /// # See also /// `fann_set_error_log`, `fann_get_errno` #[repr(C)] pub struct fann_error { errno_f: fann_errno_enum, error_log: *mut FILE, errstr: *mut c_char, } /// The fast artificial neural network (`fann`) structure. /// /// Data within this structure should never be accessed directly, but only by using the /// `fann_get_...` and `fann_set_...` functions. /// /// The fann structure is created using one of the `fann_create_...` functions and each of /// the functions which operates on the structure takes a `fann` pointer as the first parameter. /// /// # See also /// `fann_create_standard`, `fann_destroy` #[repr(C)] pub struct fann { errno_f: fann_errno_enum, error_log: *mut FILE, errstr: *mut c_char, learning_rate: c_float, learning_momentum: c_float, connection_rate: c_float, network_type: fann_nettype_enum, first_layer: *mut fann_layer, last_layer: *mut fann_layer, total_neurons: c_uint, num_input: c_uint, num_output: c_uint, weights: *mut fann_type, connections: *mut *mut fann_neuron, train_errors: *mut fann_type, training_algorithm: fann_train_enum, total_connections: c_uint, output: *mut fann_type, num_mse: c_uint, mse_value: c_float, num_bit_fail: c_uint, bit_fail_limit: fann_type, train_error_function: fann_errorfunc_enum, train_stop_function: fann_stopfunc_enum, callback: fann_callback_type, user_data: *mut c_void, cascade_output_change_fraction: c_float, cascade_output_stagnation_epochs: c_uint, cascade_candidate_change_fraction: c_float, cascade_candidate_stagnation_epochs: c_uint, cascade_best_candidate: c_uint, cascade_candidate_limit: fann_type, cascade_weight_multiplier: fann_type, cascade_max_out_epochs: c_uint, cascade_max_cand_epochs: c_uint, cascade_activation_functions: *mut fann_activationfunc_enum, cascade_activation_functions_count: c_uint, cascade_activation_steepnesses: *mut fann_type, cascade_activation_steepnesses_count: c_uint, cascade_num_candidate_groups: c_uint, cascade_candidate_scores: *mut fann_type, total_neurons_allocated: c_uint, total_connections_allocated: c_uint, quickprop_decay: c_float, quickprop_mu: c_float, rprop_increase_factor: c_float, rprop_decrease_factor: c_float, rprop_delta_min: c_float, rprop_delta_max: c_float, rprop_delta_zero: c_float, train_slopes: *mut fann_type, prev_steps: *mut fann_type, prev_train_slopes: *mut fann_type, prev_weights_deltas: *mut fann_type, scale_mean_in: *mut c_float, scale_deviation_in: *mut c_float, scale_new_min_in: *mut c_float, scale_factor_in: *mut c_float, scale_mean_out: *mut c_float, scale_deviation_out: *mut c_float, scale_new_min_out: *mut c_float, scale_factor_out: *mut c_float, } /// Describes a connection between two neurons and its weight. /// /// # See Also /// `fann_get_connection_array`, `fann_set_weight_array` /// /// This structure appears in FANN >= 2.1.0. #[repr(C)] #[derive(Copy, Clone, Debug, PartialEq)] pub struct fann_connection { /// Unique number used to identify source neuron pub from_neuron: c_uint, /// Unique number used to identify destination neuron pub to_neuron: c_uint, /// The numerical value of the weight pub weight: fann_type, } /// Structure used to store data, for use with training. /// /// The data inside this structure should never be manipulated directly, but should use some /// of the supplied training data manipulation functions. /// /// The training data structure is very useful for storing data during training and testing of a /// neural network. /// /// # See also /// `fann_read_train_from_file`, `fann_train_on_data`, `fann_destroy_train` #[repr(C)] pub struct fann_train_data { errno_f: fann_errno_enum, error_log: *mut FILE, errstr: *mut c_char, num_data: c_uint, num_input: c_uint, num_output: c_uint, input: *mut *mut fann_type, output: *mut *mut fann_type, } #[cfg_attr(not(feature = "double"), link(name = "fann"))] #[cfg_attr(feature = "double", link(name = "doublefann"))] extern { pub static mut fann_default_error_log: *mut FILE; /// Change where errors are logged to. Both `fann` and `fann_data` can be /// cast to `fann_error`, so this function can be used to set either of these. /// /// If `log_file` is NULL, no errors will be printed. /// /// If `errdat` is NULL, the default log will be set. The default log is the log used when /// creating `fann` and `fann_data`. This default log will also be the default for all new /// structs that are created. /// /// The default behavior is to log them to `stderr`. /// /// # See also /// `fann_error` /// /// This function appears in FANN >= 1.1.0. pub fn fann_set_error_log(errdat: *mut fann_error, log_file: *mut FILE); /// Returns the last error number. /// /// # See also /// `fann_errno_enum`, `fann_reset_errno` /// /// This function appears in FANN >= 1.1.0. pub fn fann_get_errno(errdat: *const fann_error) -> fann_errno_enum; /// Resets the last error number. /// /// This function appears in FANN >= 1.1.0. pub fn fann_reset_errno(errdat: *mut fann_error); /// Resets the last error string. /// /// This function appears in FANN >= 1.1.0. pub fn fann_reset_errstr(errdat: *mut fann_error); /// Returns the last error string. /// /// This function calls `fann_reset_errno` and `fann_reset_errstr`. /// /// This function appears in FANN >= 1.1.0. pub fn fann_get_errstr(errdat: *mut fann_error) -> *mut c_char; /// Prints the last error to `stderr`. /// /// This function appears in FANN >= 1.1.0. pub fn fann_print_error(errdat: *mut fann_error); /// Train one iteration with a set of inputs, and a set of desired outputs. /// This training is always incremental training (see `fann_train_enum`), since /// only one pattern is presented. /// /// # Parameters /// /// * `ann` - The neural network structure /// * `input` - an array of inputs. This array must be exactly `fann_get_num_input` /// long. /// * `desired_output` - an array of desired outputs. This array must be exactly /// `fann_get_num_output` long. /// /// # See also /// `fann_train_on_data`, `fann_train_epoch` /// /// This function appears in FANN >= 1.0.0. pub fn fann_train(ann: *mut fann, input: *const fann_type, desired_output: *const fann_type); /// Test with a set of inputs, and a set of desired outputs. /// This operation updates the mean square error, but does not /// change the network in any way. /// /// # See also /// `fann_test_data`, `fann_train` /// /// This function appears in FANN >= 1.0.0. pub fn fann_test(ann: *mut fann, input: *const fann_type, desired_output: *const fann_type) -> *mut fann_type; /// Reads the mean square error from the network. /// /// This value is calculated during /// training or testing, and can therefore sometimes be a bit off if the weights /// have been changed since the last calculation of the value. /// /// # See also /// `fann_test_data` /// /// This function appears in FANN >= 1.1.0. pub fn fann_get_MSE(ann: *const fann) -> c_float; /// The number of fail bits; means the number of output neurons which differ more /// than the bit fail limit (see `fann_get_bit_fail_limit`, `fann_set_bit_fail_limit`). /// The bits are counted in all of the training data, so this number can be higher than /// the number of training data. /// /// This value is reset by `fann_reset_MSE` and updated by all the same functions which also /// update the MSE value (e.g. `fann_test_data`, `fann_train_epoch`) /// /// # See also /// `fann_stopfunc_enum`, `fann_get_MSE` /// /// This function appears in FANN >= 2.0.0 pub fn fann_get_bit_fail(ann: *const fann) -> c_uint; /// Resets the mean square error from the network. /// /// This function also resets the number of bits that fail. /// /// # See also /// `fann_get_bit_fail_limit`, `fann_get_MSE` /// /// This function appears in FANN >= 1.1.0 pub fn fann_reset_MSE(ann: *mut fann); /// Trains on an entire dataset, for a period of time. /// /// This training uses the training algorithm chosen by `fann_set_training_algorithm`, /// and the parameters set for these training algorithms. /// /// # Parameters /// /// * `ann` - The neural network /// * `data` - The data that should be used during training /// * `max_epochs` - The maximum number of epochs the training should continue /// * `epochs_between_reports` - The number of epochs between printing a status report to /// `stdout`. A value of zero means no reports should be printed. /// * `desired_error` - The desired `fann_get_MSE` or `fann_get_bit_fail`, depending on /// which stop function is chosen by `fann_set_train_stop_function`. /// /// Instead of printing out reports every `epochs_between_reports`, a callback function can be /// called (see `fann_set_callback`). /// /// # See also /// `fann_train_on_file`, `fann_train_epoch` /// /// This function appears in FANN >= 1.0.0. pub fn fann_train_on_data(ann: *mut fann, data: *const fann_train_data, max_epochs: c_uint, epochs_between_reports: c_uint, desired_error: c_float); /// Does the same as `fann_train_on_data`, but reads the training data directly from a file. /// /// # See also /// `fann_train_on_data` /// /// This function appears in FANN >= 1.0.0. pub fn fann_train_on_file(ann: *mut fann, filename: *const c_char, max_epochs: c_uint, epochs_between_reports: c_uint, desired_error: c_float); /// Train one epoch with a set of training data. /// /// Train one epoch with the training data stored in `data`. One epoch is where all of /// the training data is considered exactly once. /// /// This function returns the MSE error as it is calculated either before or during /// the actual training. This is not the actual MSE after the training epoch, but since /// calculating this will require to go through the entire training set once more, it is /// more than adequate to use this value during training. /// /// The training algorithm used by this function is chosen by the `fann_set_training_algorithm` /// function. /// /// # See also /// `fann_train_on_data`, `fann_test_data` /// /// This function appears in FANN >= 1.2.0. pub fn fann_train_epoch(ann: *mut fann, data: *const fann_train_data) -> c_float; /// Tests a set of training data and calculates the MSE for the training data. /// /// This function updates the MSE and the bit fail values. /// /// # See also /// `fann_test`, `fann_get_MSE`, `fann_get_bit_fail` /// /// This function appears in FANN >= 1.2.0. pub fn fann_test_data(ann: *mut fann, data: *const fann_train_data) -> c_float; /// Reads a file that stores training data. /// /// The file must be formatted like: /// /// ```text /// num_train_data num_input num_output /// inputdata separated by space /// outputdata separated by space /// . /// . /// . /// inputdata separated by space /// outputdata separated by space /// ``` /// /// # See also /// `fann_train_on_data`, `fann_destroy_train`, `fann_save_train` /// /// This function appears in FANN >= 1.0.0 pub fn fann_read_train_from_file(filename: *const c_char) -> *mut fann_train_data; /// Creates the training data struct from a user supplied function. /// As the training data are numerable (data 1, data 2...), the user must write /// a function that receives the number of the training data set (input,output) /// and returns the set. /// /// # Parameters /// /// * `num_data` - The number of training data /// * `num_input` - The number of inputs per training data /// * `num_output` - The number of ouputs per training data /// * `user_function` - The user supplied function /// /// # Parameters for the user function /// /// * `num` - The number of the training data set /// * `num_input` - The number of inputs per training data /// * `num_output` - The number of ouputs per training data /// * `input` - The set of inputs /// * `output` - The set of desired outputs /// /// # See also /// `fann_read_train_from_file`, `fann_train_on_data`, `fann_destroy_train`, `fann_save_train` /// /// This function appears in FANN >= 2.1.0 pub fn fann_create_train_from_callback(num_data: c_uint, num_input: c_uint, num_output: c_uint, user_function: Option<extern "C" fn(num: c_uint, num_input: c_uint, num_output: c_uint, input: *mut fann_type, output: *mut fann_type)>) -> *mut fann_train_data; /// Destructs the training data and properly deallocates all of the associated data. /// Be sure to call this function when finished using the training data. /// /// This function appears in FANN >= 1.0.0 pub fn fann_destroy_train(train_data: *mut fann_train_data); /// Shuffles training data, randomizing the order. /// This is recommended for incremental training, while it has no influence during batch /// training. /// /// This function appears in FANN >= 1.1.0. pub fn fann_shuffle_train_data(train_data: *mut fann_train_data); /// Scale input and output data based on previously calculated parameters. /// /// # Parameters /// /// * `ann` - ANN for which trained parameters were calculated before /// * `data` - training data that needs to be scaled /// /// # See also /// `fann_descale_train`, `fann_set_scaling_params` /// /// This function appears in FANN >= 2.1.0 pub fn fann_scale_train(ann: *mut fann, data: *mut fann_train_data); /// Descale input and output data based on previously calculated parameters. /// /// # Parameters /// /// * `ann` - ann for which trained parameters were calculated before /// * `data` - training data that needs to be descaled /// /// # See also /// `fann_scale_train`, `fann_set_scaling_params` /// /// This function appears in FANN >= 2.1.0 pub fn fann_descale_train(ann: *mut fann, data: *mut fann_train_data); /// Calculate input scaling parameters for future use based on training data. /// /// # Parameters /// /// * `ann` - ANN for which parameters need to be calculated /// * `data` - training data that will be used to calculate scaling parameters /// * `new_input_min` - desired lower bound in input data after scaling (not strictly followed) /// * `new_input_max` - desired upper bound in input data after scaling (not strictly followed) /// /// # See also /// `fann_set_output_scaling_params` /// /// This function appears in FANN >= 2.1.0 pub fn fann_set_input_scaling_params(ann: *mut fann, data: *const fann_train_data, new_input_min: c_float, new_input_max: c_float) -> c_int; /// Calculate output scaling parameters for future use based on training data. /// /// # Parameters /// /// * `ann` - ANN for which parameters need to be calculated /// * `data` - training data that will be used to calculate scaling parameters /// * `new_output_min` - desired lower bound in output data after scaling (not strictly /// followed) /// * `new_output_max` - desired upper bound in output data after scaling (not strictly /// followed) /// /// # See also /// `fann_set_input_scaling_params` /// /// This function appears in FANN >= 2.1.0 pub fn fann_set_output_scaling_params(ann: *mut fann, data: *const fann_train_data, new_output_min: c_float, new_output_max: c_float) -> c_int; /// Calculate input and output scaling parameters for future use based on training data. /// /// # Parameters /// /// * `ann` - ANN for which parameters need to be calculated /// * `data` - training data that will be used to calculate scaling parameters /// * `new_input_min` - desired lower bound in input data after scaling (not strictly followed) /// * `new_input_max` - desired upper bound in input data after scaling (not strictly followed) /// * `new_output_min` - desired lower bound in output data after scaling (not strictly /// followed) /// * `new_output_max` - desired upper bound in output data after scaling (not strictly /// followed) /// /// # See also /// `fann_set_input_scaling_params`, `fann_set_output_scaling_params` /// /// This function appears in FANN >= 2.1.0 pub fn fann_set_scaling_params(ann: *mut fann, data: *const fann_train_data, new_input_min: c_float, new_input_max: c_float, new_output_min: c_float, new_output_max: c_float) -> c_int; /// Clears scaling parameters. /// /// # Parameters /// /// * `ann` - ann for which to clear scaling parameters /// /// This function appears in FANN >= 2.1.0 pub fn fann_clear_scaling_params(ann: *mut fann) -> c_int; /// Scale data in input vector before feeding it to the ANN based on previously calculated /// parameters. /// /// # Parameters /// /// `ann` - for which scaling parameters were calculated /// `input_vector` - input vector that will be scaled /// /// # See also /// `fann_descale_input`, `fann_scale_output` /// /// This function appears in FANN >= 2.1.0 pub fn fann_scale_input(ann: *mut fann, input_vector: *mut fann_type); /// Scale data in output vector before feeding it to the ANN based on previously calculated /// parameters. /// /// # Parameters /// /// * `ann` - for which scaling parameters were calculated /// * `output_vector` - output vector that will be scaled /// /// # See also /// `fann_descale_output`, `fann_scale_intput` /// /// This function appears in FANN >= 2.1.0 pub fn fann_scale_output(ann: *mut fann, output_vector: *mut fann_type); /// Scale data in input vector after getting it from the ANN based on previously calculated /// parameters. /// /// # Parameters /// /// * `ann` - for which scaling parameters were calculated /// * `input_vector` - input vector that will be descaled /// /// # See also /// `fann_scale_input`, `fann_descale_output` /// /// This function appears in FANN >= 2.1.0 pub fn fann_descale_input(ann: *mut fann, input_vector: *mut fann_type); /// Scale data in output vector after getting it from the ANN based on previously calculated /// parameters. /// /// # Parameters /// /// * `ann` - for which scaling parameters were calculated /// * `output_vector` - output vector that will be descaled /// /// # See also /// `fann_descale_input`, `fann_scale_output` /// /// This function appears in FANN >= 2.1.0 pub fn fann_descale_output(ann: *mut fann, output_vector: *mut fann_type); /// Scales the inputs in the training data to the specified range. /// /// # See also /// `fann_scale_output_train_data`, `fann_scale_train_data` /// /// This function appears in FANN >= 2.0.0. pub fn fann_scale_input_train_data(train_data: *mut fann_train_data, new_min: fann_type, new_max: fann_type); /// Scales the outputs in the training data to the specified range. /// /// # See also /// `fann_scale_input_train_data`, `fann_scale_train_data` /// /// This function appears in FANN >= 2.0.0. pub fn fann_scale_output_train_data(train_data: *mut fann_train_data, new_min: fann_type, new_max: fann_type); /// Scales the inputs and outputs in the training data to the specified range. /// /// # See also /// `fann_scale_output_train_data`, `fann_scale_input_train_data` /// /// This function appears in FANN >= 2.0.0. pub fn fann_scale_train_data(train_data: *mut fann_train_data, new_min: fann_type, new_max: fann_type); /// Merges the data from `data1` and `data2` into a new `fann_train_data`. /// /// This function appears in FANN >= 1.1.0. pub fn fann_merge_train_data(data1: *const fann_train_data, data2: *const fann_train_data) -> *mut fann_train_data; /// Returns an exact copy of a `fann_train_data`. /// /// This function appears in FANN >= 1.1.0. pub fn fann_duplicate_train_data(data: *const fann_train_data) -> *mut fann_train_data; /// Returns an copy of a subset of the `fann_train_data`, starting at position `pos` /// and `length` elements forward. /// /// ```notest /// fann_subset_train_data(train_data, 0, fann_length_train_data(train_data)) /// ``` /// /// will do the same as `fann_duplicate_train_data`. /// /// # See also /// `fann_length_train_data` /// /// This function appears in FANN >= 2.0.0. pub fn fann_subset_train_data(data: *const fann_train_data, pos: c_uint, length: c_uint) -> *mut fann_train_data; /// Returns the number of training patterns in the `fann_train_data`. /// /// This function appears in FANN >= 2.0.0. pub fn fann_length_train_data(data: *const fann_train_data) -> c_uint; /// Returns the number of inputs in each of the training patterns in the `fann_train_data`. /// /// # See also /// `fann_num_train_data`, `fann_num_output_train_data` /// /// This function appears in FANN >= 2.0.0. pub fn fann_num_input_train_data(data: *const fann_train_data) -> c_uint; /// Returns the number of outputs in each of the training patterns in the `fann_train_data`. /// /// # See also /// `fann_num_train_data`, `fann_num_input_train_data` /// /// This function appears in FANN >= 2.0.0. pub fn fann_num_output_train_data(data: *const fann_train_data) -> c_uint; /// Save the training structure to a file, with the format specified in /// `fann_read_train_from_file` /// /// # Return /// /// The function returns 0 on success and -1 on failure. /// /// # See also /// `fann_read_train_from_file`, `fann_save_train_to_fixed` /// /// This function appears in FANN >= 1.0.0. pub fn fann_save_train(data: *mut fann_train_data, filename: *const c_char) -> c_int; /// Saves the training structure to a fixed point data file. /// /// This function is very useful for testing the quality of a fixed point network. /// /// # Return /// /// The function returns 0 on success and -1 on failure. /// /// # See also /// `fann_save_train` /// /// This function appears in FANN >= 1.0.0. pub fn fann_save_train_to_fixed(data: *mut fann_train_data, filename: *const c_char, decimal_point: c_uint) -> c_int; /// Return the training algorithm as described by `fann_train_enum`. This training algorithm /// is used by `fann_train_on_data` and associated functions. /// /// Note that this algorithm is also used during `fann_cascadetrain_on_data`, although only /// `FANN_TRAIN_RPROP` and `FANN_TRAIN_QUICKPROP` is allowed during cascade training. /// /// The default training algorithm is `FANN_TRAIN_RPROP`. /// /// # See also /// `fann_set_training_algorithm`, `fann_train_enum` /// /// This function appears in FANN >= 1.0.0. pub fn fann_get_training_algorithm(ann: *const fann) -> fann_train_enum; /// Set the training algorithm. /// /// More info available in `fann_get_training_algorithm`. /// /// This function appears in FANN >= 1.0.0. pub fn fann_set_training_algorithm(ann: *mut fann, training_algorithm: fann_train_enum); /// Return the learning rate. /// /// The learning rate is used to determine how aggressive training should be for some of the /// training algorithms (`FANN_TRAIN_INCREMENTAL`, `FANN_TRAIN_BATCH`, `FANN_TRAIN_QUICKPROP`). /// Do however note that it is not used in `FANN_TRAIN_RPROP`. /// /// The default learning rate is 0.7. /// /// # See also /// `fann_set_learning_rate`, `fann_set_training_algorithm` /// /// This function appears in FANN >= 1.0.0. pub fn fann_get_learning_rate(ann: *const fann) -> c_float; /// Set the learning rate. /// /// More info available in `fann_get_learning_rate`. /// /// This function appears in FANN >= 1.0.0. pub fn fann_set_learning_rate(ann: *mut fann, learning_rate: c_float); /// Get the learning momentum. /// /// The learning momentum can be used to speed up FANN_TRAIN_INCREMENTAL training. /// A too high momentum will however not benefit training. Setting momentum to 0 will /// be the same as not using the momentum parameter. The recommended value of this parameter /// is between 0.0 and 1.0. /// /// The default momentum is 0. /// /// # See also /// `fann_set_learning_momentum`, `fann_set_training_algorithm` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_learning_momentum(ann: *const fann) -> c_float; /// Set the learning momentum. /// /// More info available in `fann_get_learning_momentum`. /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_learning_momentum(ann: *mut fann, learning_momentum: c_float); /// Get the activation function for neuron number `neuron` in layer number `layer`, /// counting the input layer as layer 0. /// /// It is not possible to get activation functions for the neurons in the input layer. /// /// Information about the individual activation functions is available at /// `fann_activationfunc_enum`. /// /// # Returns /// /// The activation function for the neuron or `FANN_NONE` if the neuron is not defined in the /// neural network. /// /// # See also /// `fann_set_activation_function_layer`, `fann_set_activation_function_hidden`, /// `fann_set_activation_function_output`, `fann_set_activation_steepness`, /// `fann_set_activation_function` /// /// This function appears in FANN >= 2.1.0. pub fn fann_get_activation_function(ann: *const fann, layer: c_int, neuron: c_int) -> fann_activationfunc_enum; /// Set the activation function for neuron number `neuron` in layer number `layer`, /// counting the input layer as layer 0. /// /// It is not possible to set activation functions for the neurons in the input layer. /// /// When choosing an activation function it is important to note that the activation /// functions have different range. `FANN_SIGMOID` is e.g. in the 0 - 1 range while /// `FANN_SIGMOID_SYMMETRIC` is in the -1 - 1 range and `FANN_LINEAR` is unbounded. /// /// Information about the individual activation functions is available at /// `fann_activationfunc_enum`. /// /// The default activation function is `FANN_SIGMOID_STEPWISE`. /// /// # See also /// `fann_set_activation_function_layer`, `fann_set_activation_function_hidden`, /// `fann_set_activation_function_output`, `fann_set_activation_steepness`, /// `fann_get_activation_function` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_activation_function(ann: *mut fann, activation_function: fann_activationfunc_enum, layer: c_int, neuron: c_int); /// Set the activation function for all the neurons in the layer number `layer`, /// counting the input layer as layer 0. /// /// It is not possible to set activation functions for the neurons in the input layer. /// /// # See also /// `fann_set_activation_function`, `fann_set_activation_function_hidden`, /// `fann_set_activation_function_output`, `fann_set_activation_steepness_layer` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_activation_function_layer(ann: *mut fann, activation_function: fann_activationfunc_enum, layer: c_int); /// Set the activation function for all of the hidden layers. /// /// # See also /// `fann_set_activation_function`, `fann_set_activation_function_layer`, /// `fann_set_activation_function_output`, `fann_set_activation_steepness_hidden` /// /// This function appears in FANN >= 1.0.0. pub fn fann_set_activation_function_hidden(ann: *mut fann, activation_function: fann_activationfunc_enum); /// Set the activation function for the output layer. /// /// # See also /// `fann_set_activation_function`, `fann_set_activation_function_layer`, /// `fann_set_activation_function_hidden`, `fann_set_activation_steepness_output` /// /// This function appears in FANN >= 1.0.0. pub fn fann_set_activation_function_output(ann: *mut fann, activation_function: fann_activationfunc_enum); /// Get the activation steepness for neuron number `neuron` in layer number `layer`, /// counting the input layer as layer 0. /// /// It is not possible to get activation steepness for the neurons in the input layer. /// /// The steepness of an activation function says something about how fast the activation /// function goes from the minimum to the maximum. A high value for the activation function will /// also give a more aggressive training. /// /// When training neural networks where the output values should be at the extremes (usually 0 /// and 1, depending on the activation function), a steep activation function can be used (e.g. /// 1.0). /// /// The default activation steepness is 0.5. /// /// # Returns /// The activation steepness for the neuron or -1 if the neuron is not defined in the neural /// network. /// /// #See also /// `fann_set_activation_steepness_layer`, `fann_set_activation_steepness_hidden`, /// `fann_set_activation_steepness_output`, `fann_set_activation_function`, /// `fann_set_activation_steepness` /// /// This function appears in FANN >= 2.1.0 pub fn fann_get_activation_steepness(ann: *const fann, layer: c_int, neuron: c_int) -> fann_type; /// Set the activation steepness for neuron number `neuron` in layer number `layer`, /// counting the input layer as layer 0. /// /// It is not possible to set activation steepness for the neurons in the input layer. /// /// The steepness of an activation function says something about how fast the activation /// function goes from the minimum to the maximum. A high value for the activation function will /// also give a more aggressive training. /// /// When training neural networks where the output values should be at the extremes (usually 0 /// and 1, depending on the activation function), a steep activation function can be used (e.g. /// 1.0). /// /// The default activation steepness is 0.5. /// /// # See also /// `fann_set_activation_steepness_layer`, `fann_set_activation_steepness_hidden`, /// `fann_set_activation_steepness_output`, `fann_set_activation_function`, /// `fann_get_activation_steepness` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_activation_steepness(ann: *mut fann, steepness: fann_type, layer: c_int, neuron: c_int); /// Set the activation steepness for all neurons in layer number `layer`, /// counting the input layer as layer 0. /// /// It is not possible to set activation steepness for the neurons in the input layer. /// /// # See also /// `fann_set_activation_steepness`, `fann_set_activation_steepness_hidden`, /// `fann_set_activation_steepness_output`, `fann_set_activation_function_layer` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_activation_steepness_layer(ann: *mut fann, steepness: fann_type, layer: c_int); /// Set the steepness of the activation steepness in all of the hidden layers. /// /// See also: /// `fann_set_activation_steepness`, `fann_set_activation_steepness_layer`, /// `fann_set_activation_steepness_output`, `fann_set_activation_function_hidden` /// /// This function appears in FANN >= 1.2.0. pub fn fann_set_activation_steepness_hidden(ann: *mut fann, steepness: fann_type); /// Set the steepness of the activation steepness in the output layer. /// /// # See also /// `fann_set_activation_steepness`, `fann_set_activation_steepness_layer`, /// `fann_set_activation_steepness_hidden`, `fann_set_activation_function_output` /// /// This function appears in FANN >= 1.2.0. pub fn fann_set_activation_steepness_output(ann: *mut fann, steepness: fann_type); /// Returns the error function used during training. /// /// The error functions are described further in `fann_errorfunc_enum`. /// /// The default error function is `FANN_ERRORFUNC_TANH` /// /// # See also /// `fann_set_train_error_function` /// /// This function appears in FANN >= 1.2.0. pub fn fann_get_train_error_function(ann: *const fann) -> fann_errorfunc_enum; /// Set the error function used during training. /// /// The error functions are described further in `fann_errorfunc_enum`. /// /// # See also /// `fann_get_train_error_function` /// /// This function appears in FANN >= 1.2.0. pub fn fann_set_train_error_function(ann: *mut fann, train_error_function: fann_errorfunc_enum); /// Returns the the stop function used during training. /// /// The stop function is described further in `fann_stopfunc_enum`. /// /// The default stop function is `FANN_STOPFUNC_MSE`. /// /// # See also /// `fann_get_train_stop_function`, `fann_get_bit_fail_limit` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_train_stop_function(ann: *const fann) -> fann_stopfunc_enum; /// Set the stop function used during training. /// /// Returns the the stop function used during training. /// /// The stop function is described further in `fann_stopfunc_enum`. /// /// # See also /// `fann_get_train_stop_function` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_train_stop_function(ann: *mut fann, train_stop_function: fann_stopfunc_enum); /// Returns the bit fail limit used during training. /// /// The bit fail limit is used during training where the `fann_stopfunc_enum` is set to /// `FANN_STOPFUNC_BIT`. /// /// The limit is the maximum accepted difference between the desired output and the actual /// output during training. Each output that diverges more than this limit is counted as an /// error bit. This difference is divided by two when dealing with symmetric activation /// functions, so that symmetric and not symmetric activation functions can use the same limit. /// /// The default bit fail limit is 0.35. /// /// # See also /// `fann_set_bit_fail_limit` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_bit_fail_limit(ann: *const fann) -> fann_type; /// Set the bit fail limit used during training. /// /// # See also /// `fann_get_bit_fail_limit` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_bit_fail_limit(ann: *mut fann, bit_fail_limit: fann_type); /// Sets the callback function for use during training. /// /// See `fann_callback_type` for more information about the callback function. /// /// The default callback function simply prints out some status information. /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_callback(ann: *mut fann, callback: fann_callback_type); /// The decay is a small negative valued number which is the factor that the weights /// should become smaller in each iteration during quickprop training. This is used /// to make sure that the weights do not become too high during training. /// /// The default decay is -0.0001. /// /// # See also /// `fann_set_quickprop_decay` /// /// This function appears in FANN >= 1.2.0. pub fn fann_get_quickprop_decay(ann: *const fann) -> c_float; /// Sets the quickprop decay factor. /// /// # See also /// `fann_get_quickprop_decay` /// /// This function appears in FANN >= 1.2.0. pub fn fann_set_quickprop_decay(ann: *mut fann, quickprop_decay: c_float); /// The mu factor is used to increase and decrease the step size during quickprop training. /// The mu factor should always be above 1, since it would otherwise decrease the step size /// when it was supposed to increase it. /// /// The default mu factor is 1.75. /// /// # See also /// `fann_set_quickprop_mu` /// /// This function appears in FANN >= 1.2.0. pub fn fann_get_quickprop_mu(ann: *const fann) -> c_float; /// Sets the quickprop mu factor. /// /// # See also /// `fann_get_quickprop_mu` /// /// This function appears in FANN >= 1.2.0. pub fn fann_set_quickprop_mu(ann: *mut fann, quickprop_mu: c_float); /// The increase factor is a value larger than 1, which is used to /// increase the step size during RPROP training. /// /// The default increase factor is 1.2. /// /// # See also /// `fann_set_rprop_increase_factor` /// /// This function appears in FANN >= 1.2.0. pub fn fann_get_rprop_increase_factor(ann: *const fann) -> c_float; /// The increase factor used during RPROP training. /// /// # See also /// `fann_get_rprop_increase_factor` /// /// This function appears in FANN >= 1.2.0. pub fn fann_set_rprop_increase_factor(ann: *mut fann, rprop_increase_factor: c_float); /// The decrease factor is a value smaller than 1, which is used to decrease the step size /// during RPROP training. /// /// The default decrease factor is 0.5. /// /// # See also /// `fann_set_rprop_decrease_factor` /// /// This function appears in FANN >= 1.2.0. pub fn fann_get_rprop_decrease_factor(ann: *const fann) -> c_float; /// The decrease factor is a value smaller than 1, which is used to decrease the step size /// during RPROP training. /// /// # See also /// `fann_get_rprop_decrease_factor` /// /// This function appears in FANN >= 1.2.0. pub fn fann_set_rprop_decrease_factor(ann: *mut fann, rprop_decrease_factor: c_float); /// The minimum step size is a small positive number determining how small the minimum step size /// may be. /// /// The default value delta min is 0.0. /// /// # See also /// `fann_set_rprop_delta_min` /// /// This function appears in FANN >= 1.2.0. pub fn fann_get_rprop_delta_min(ann: *const fann) -> c_float; /// The minimum step size is a small positive number determining how small the minimum step size /// may be. /// /// # See also /// `fann_get_rprop_delta_min` /// /// This function appears in FANN >= 1.2.0. pub fn fann_set_rprop_delta_min(ann: *mut fann, rprop_delta_min: c_float); /// The maximum step size is a positive number determining how large the maximum step size may /// be. /// /// The default delta max is 50.0. /// /// # See also /// `fann_set_rprop_delta_max`, `fann_get_rprop_delta_min` /// /// This function appears in FANN >= 1.2.0. pub fn fann_get_rprop_delta_max(ann: *const fann) -> c_float; /// The maximum step size is a positive number determining how large the maximum step size may /// be. /// /// # See also /// `fann_get_rprop_delta_max`, `fann_get_rprop_delta_min` /// /// This function appears in FANN >= 1.2.0. pub fn fann_set_rprop_delta_max(ann: *mut fann, rprop_delta_max: c_float); /// The initial step size is a positive number determining the initial step size. /// /// The default delta zero is 0.1. /// /// # See also /// `fann_set_rprop_delta_zero`, `fann_get_rprop_delta_min`, `fann_get_rprop_delta_max` /// /// This function appears in FANN >= 2.1.0. pub fn fann_get_rprop_delta_zero(ann: *const fann) -> c_float; /// The initial step size is a positive number determining the initial step size. /// /// # See also /// `fann_get_rprop_delta_zero`, `fann_get_rprop_delta_zero` /// /// This function appears in FANN >= 2.1.0. pub fn fann_set_rprop_delta_zero(ann: *mut fann, rprop_delta_max: c_float); /// Trains on an entire dataset, for a period of time using the Cascade2 training algorithm. /// This algorithm adds neurons to the neural network while training, which means that it /// needs to start with an ANN without any hidden layers. The neural network should also use /// shortcut connections, so `fann_create_shortcut` should be used to create the ANN like this: /// /// ```notest /// let ann = fann_create_shortcut(2, /// fann_num_input_train_data(train_data), /// fann_num_output_train_data(train_data)); /// ``` /// /// This training uses the parameters set using `fann_set_cascade_...`, but it also uses /// another training algorithm as it's internal training algorithm. This algorithm can be set to /// either `FANN_TRAIN_RPROP` or `FANN_TRAIN_QUICKPROP` by `fann_set_training_algorithm`, and /// the parameters set for these training algorithms will also affect the cascade training. /// /// # Parameters /// /// * `ann` - The neural network /// * `data` - The data that should be used during training /// * `max_neuron` - The maximum number of neurons to be added to the ANN /// * `neurons_between_reports` - The number of neurons between printing a status report to /// stdout. A value of zero means no reports should be printed. /// * `desired_error` - The desired `fann_get_MSE` or `fann_get_bit_fail`, depending /// on which stop function is chosen by `fann_set_train_stop_function`. /// /// Instead of printing out reports every neurons_between_reports, a callback function can be /// called (see `fann_set_callback`). /// /// # See also /// `fann_train_on_data`, `fann_cascadetrain_on_file` /// /// This function appears in FANN >= 2.0.0. pub fn fann_cascadetrain_on_data(ann: *mut fann, data: *const fann_train_data, max_neurons: c_uint, neurons_between_reports: c_uint, desired_error: c_float); /// Does the same as `fann_cascadetrain_on_data`, but reads the training data directly from a /// file. /// /// # See also /// `fann_cascadetrain_on_data` /// /// This function appears in FANN >= 2.0.0. pub fn fann_cascadetrain_on_file(ann: *mut fann, filename: *const c_char, max_neurons: c_uint, neurons_between_reports: c_uint, desired_error: c_float); /// The cascade output change fraction is a number between 0 and 1 determining how large a /// fraction the `fann_get_MSE` value should change within /// `fann_get_cascade_output_stagnation_epochs` during training of the output connections, in /// order for the training not to stagnate. If the training stagnates, the training of the /// output connections will be ended and new candidates will be prepared. /// /// This means: /// If the MSE does not change by a fraction of `fann_get_cascade_output_change_fraction` during /// a period of `fann_get_cascade_output_stagnation_epochs`, the training of the output /// connections is stopped because the training has stagnated. /// /// If the cascade output change fraction is low, the output connections will be trained more /// and if the fraction is high they will be trained less. /// /// The default cascade output change fraction is 0.01, which is equivalent to a 1% change in /// MSE. /// /// # See also /// `fann_set_cascade_output_change_fraction`, `fann_get_MSE`, /// `fann_get_cascade_output_stagnation_epochs` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_cascade_output_change_fraction(ann: *const fann) -> c_float; /// Sets the cascade output change fraction. /// /// # See also /// `fann_get_cascade_output_change_fraction` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_cascade_output_change_fraction(ann: *mut fann, cascade_output_change_fraction: c_float); /// The number of cascade output stagnation epochs determines the number of epochs training is /// allowed to continue without changing the MSE by a fraction of /// `fann_get_cascade_output_change_fraction`. /// /// See more info about this parameter in `fann_get_cascade_output_change_fraction`. /// /// The default number of cascade output stagnation epochs is 12. /// /// # See also /// `fann_set_cascade_output_stagnation_epochs`, `fann_get_cascade_output_change_fraction` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_cascade_output_stagnation_epochs(ann: *const fann) -> c_uint; /// Sets the number of cascade output stagnation epochs. /// /// # See also /// `fann_get_cascade_output_stagnation_epochs` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_cascade_output_stagnation_epochs(ann: *mut fann, cascade_output_stagnation_epochs: c_uint); /// The cascade candidate change fraction is a number between 0 and 1 determining how large a /// fraction the `fann_get_MSE` value should change within /// `fann_get_cascade_candidate_stagnation_epochs` during training of the candidate neurons, in /// order for the training not to stagnate. If the training stagnates, the training of the /// candidate neurons will be ended and the best candidate will be selected. /// /// This means: /// If the MSE does not change by a fraction of `fann_get_cascade_candidate_change_fraction` /// during a period of `fann_get_cascade_candidate_stagnation_epochs`, the training of the /// candidate neurons is stopped because the training has stagnated. /// /// If the cascade candidate change fraction is low, the candidate neurons will be trained more /// and if the fraction is high they will be trained less. /// /// The default cascade candidate change fraction is 0.01, which is equivalent to a 1% change in /// MSE. /// /// # See also /// `fann_set_cascade_candidate_change_fraction`, `fann_get_MSE`, /// `fann_get_cascade_candidate_stagnation_epochs` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_cascade_candidate_change_fraction(ann: *const fann) -> c_float; /// Sets the cascade candidate change fraction. /// /// # See also /// `fann_get_cascade_candidate_change_fraction` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_cascade_candidate_change_fraction(ann: *mut fann, cascade_candidate_change_fraction: c_float); /// The number of cascade candidate stagnation epochs determines the number of epochs training /// is allowed to continue without changing the MSE by a fraction of /// `fann_get_cascade_candidate_change_fraction`. /// /// See more info about this parameter in `fann_get_cascade_candidate_change_fraction`. /// /// The default number of cascade candidate stagnation epochs is 12. /// /// # See also /// `fann_set_cascade_candidate_stagnation_epochs`, `fann_get_cascade_candidate_change_fraction` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_cascade_candidate_stagnation_epochs(ann: *const fann) -> c_uint; /// Sets the number of cascade candidate stagnation epochs. /// /// # See also /// `fann_get_cascade_candidate_stagnation_epochs` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_cascade_candidate_stagnation_epochs(ann: *mut fann, cascade_candidate_stagnation_epochs: c_uint); /// The weight multiplier is a parameter which is used to multiply the weights from the /// candidate neuron before adding the neuron to the neural network. This parameter is usually /// between 0 and 1, and is used to make the training a bit less aggressive. /// /// The default weight multiplier is 0.4 /// /// # See also /// `fann_set_cascade_weight_multiplier` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_cascade_weight_multiplier(ann: *const fann) -> fann_type; /// Sets the weight multiplier. /// /// # See also /// `fann_get_cascade_weight_multiplier` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_cascade_weight_multiplier(ann: *mut fann, cascade_weight_multiplier: fann_type); /// The candidate limit is a limit for how much the candidate neuron may be trained. /// The limit is a limit on the proportion between the MSE and candidate score. /// /// Set this to a lower value to avoid overfitting and to a higher if overfitting is /// not a problem. /// /// The default candidate limit is 1000.0 /// /// # See also /// `fann_set_cascade_candidate_limit` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_cascade_candidate_limit(ann: *const fann) -> fann_type; /// Sets the candidate limit. /// /// # See also /// `fann_get_cascade_candidate_limit` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_cascade_candidate_limit(ann: *mut fann, cascade_candidate_limit: fann_type); /// The maximum out epochs determines the maximum number of epochs the output connections /// may be trained after adding a new candidate neuron. /// /// The default max out epochs is 150 /// /// # See also /// `fann_set_cascade_max_out_epochs` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_cascade_max_out_epochs(ann: *const fann) -> c_uint; /// Sets the maximum out epochs. /// /// # See also /// `fann_get_cascade_max_out_epochs` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_cascade_max_out_epochs(ann: *mut fann, cascade_max_out_epochs: c_uint); /// The maximum candidate epochs determines the maximum number of epochs the input /// connections to the candidates may be trained before adding a new candidate neuron. /// /// The default max candidate epochs is 150. /// /// # See also /// `fann_set_cascade_max_cand_epochs` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_cascade_max_cand_epochs(ann: *const fann) -> c_uint; /// Sets the max candidate epochs. /// /// # See also /// `fann_get_cascade_max_cand_epochs` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_cascade_max_cand_epochs(ann: *mut fann, cascade_max_cand_epochs: c_uint); /// The number of candidates used during training (calculated by multiplying /// `fann_get_cascade_activation_functions_count`, /// `fann_get_cascade_activation_steepnesses_count` and /// `fann_get_cascade_num_candidate_groups`). /// /// The actual candidates is defined by the `fann_get_cascade_activation_functions` and /// `fann_get_cascade_activation_steepnesses` arrays. These arrays define the activation /// functions and activation steepnesses used for the candidate neurons. If there are 2 /// activation functions in the activation function array and 3 steepnesses in the steepness /// array, then there will be 2x3=6 different candidates which will be trained. These 6 /// different candidates can be copied into several candidate groups, where the only difference /// between these groups is the initial weights. If the number of groups is set to 2, then the /// number of candidate neurons will be 2x3x2=12. The number of candidate groups is defined by /// `fann_set_cascade_num_candidate_groups`. /// /// The default number of candidates is 6x4x2 = 48 /// /// # See also /// `fann_get_cascade_activation_functions`, `fann_get_cascade_activation_functions_count`, /// `fann_get_cascade_activation_steepnesses`, `fann_get_cascade_activation_steepnesses_count`, /// `fann_get_cascade_num_candidate_groups` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_cascade_num_candidates(ann: *const fann) -> c_uint; /// The number of activation functions in the `fann_get_cascade_activation_functions` array. /// /// The default number of activation functions is 6. /// /// # See also /// `fann_get_cascade_activation_functions`, `fann_set_cascade_activation_functions` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_cascade_activation_functions_count(ann: *const fann) -> c_uint; /// The cascade activation functions array is an array of the different activation functions /// used by the candidates. /// /// See `fann_get_cascade_num_candidates` for a description of which candidate neurons will be /// generated by this array. /// /// The default activation functions is {`FANN_SIGMOID`, `FANN_SIGMOID_SYMMETRIC`, /// `FANN_GAUSSIAN`, `FANN_GAUSSIAN_SYMMETRIC`, `FANN_ELLIOTT`, `FANN_ELLIOTT_SYMMETRIC`, /// `FANN_SIN_SYMMETRIC`, `FANN_COS_SYMMETRIC`, `FANN_SIN`, `FANN_COS`} /// /// # See also /// `fann_get_cascade_activation_functions_count`, `fann_set_cascade_activation_functions`, /// `fann_activationfunc_enum` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_cascade_activation_functions(ann: *const fann) -> *mut fann_activationfunc_enum; /// Sets the array of cascade candidate activation functions. The array must be just as long /// as defined by the count. /// /// See `fann_get_cascade_num_candidates` for a description of which candidate neurons will be /// generated by this array. /// /// # See also /// `fann_get_cascade_activation_steepnesses_count`, `fann_get_cascade_activation_steepnesses` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_cascade_activation_functions(ann: *mut fann, cascade_activation_functions: *const fann_activationfunc_enum, cascade_activation_functions_count: c_uint); /// The number of activation steepnesses in the `fann_get_cascade_activation_functions` array. /// /// The default number of activation steepnesses is 4. /// /// # See also /// `fann_get_cascade_activation_steepnesses`, `fann_set_cascade_activation_functions` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_cascade_activation_steepnesses_count(ann: *const fann) -> c_uint; /// The cascade activation steepnesses array is an array of the different activation functions /// used by the candidates. /// /// See `fann_get_cascade_num_candidates` for a description of which candidate neurons will be /// generated by this array. /// /// The default activation steepnesses is {0.25, 0.50, 0.75, 1.00} /// /// # See also /// `fann_set_cascade_activation_steepnesses`, `fann_get_cascade_activation_steepnesses_count` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_cascade_activation_steepnesses(ann: *const fann) -> *mut fann_type; /// Sets the array of cascade candidate activation steepnesses. The array must be just as long /// as defined by the count. /// /// See `fann_get_cascade_num_candidates` for a description of which candidate neurons will be /// generated by this array. /// /// # See also /// `fann_get_cascade_activation_steepnesses`, `fann_get_cascade_activation_steepnesses_count` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_cascade_activation_steepnesses(ann: *mut fann, cascade_activation_steepnesses: *const fann_type, cascade_activation_steepnesses_count: c_uint); /// The number of candidate groups is the number of groups of identical candidates which will be /// used during training. /// /// This number can be used to have more candidates without having to define new parameters for /// the candidates. /// /// See `fann_get_cascade_num_candidates` for a description of which candidate neurons will be /// generated by this parameter. /// /// The default number of candidate groups is 2. /// /// # See also /// `fann_set_cascade_num_candidate_groups` /// /// This function appears in FANN >= 2.0.0. pub fn fann_get_cascade_num_candidate_groups(ann: *const fann) -> c_uint; /// Sets the number of candidate groups. /// /// # See also /// `fann_get_cascade_num_candidate_groups` /// /// This function appears in FANN >= 2.0.0. pub fn fann_set_cascade_num_candidate_groups(ann: *mut fann, cascade_num_candidate_groups: c_uint); /// Constructs a backpropagation neural network from a configuration file, which has been saved /// by `fann_save`. /// /// # See also /// `fann_save`, `fann_save_to_fixed` /// /// This function appears in FANN >= 1.0.0. pub fn fann_create_from_file(configuration_file: *const c_char) -> *mut fann; /// Save the entire network to a configuration file. /// /// The configuration file contains all information about the neural network and enables /// `fann_create_from_file` to create an exact copy of the neural network and all of the /// parameters associated with the neural network. /// /// These three parameters (`fann_set_callback`, `fann_set_error_log`, /// `fann_set_user_data`) are *NOT* saved to the file because they cannot safely be /// ported to a different location. Also temporary parameters generated during training /// like `fann_get_MSE` are not saved. /// /// # Return /// The function returns 0 on success and -1 on failure. /// /// # See also /// `fann_create_from_file`, `fann_save_to_fixed` /// /// This function appears in FANN >= 1.0.0. pub fn fann_save(ann: *mut fann, configuration_file: *const c_char) -> c_int; /// Saves the entire network to a configuration file. /// But it is saved in fixed point format no matter which /// format it is currently in. /// /// This is useful for training a network in floating points, /// and then later executing it in fixed point. /// /// The function returns the bit position of the fix point, which /// can be used to find out how accurate the fixed point network will be. /// A high value indicates high precision, and a low value indicates low /// precision. /// /// A negative value indicates very low precision, and a very strong possibility for overflow. /// (the actual fix point will be set to 0, since a negative fix point does not make sense). /// /// Generally, a fix point lower than 6 is bad, and should be avoided. /// The best way to avoid this is to have fewer connections to each neuron, /// or just fewer neurons in each layer. /// /// The fixed point use of this network is only intended for use on machines that /// have no floating point processor, like an iPAQ. On normal computers the floating /// point version is actually faster. /// /// # See also /// `fann_create_from_file`, `fann_save` /// /// This function appears in FANN >= 1.0.0. pub fn fann_save_to_fixed(ann: *mut fann, configuration_file: *const c_char) -> c_int; /// Creates a standard fully connected backpropagation neural network. /// /// There will be a bias neuron in each layer (except the output layer), /// and this bias neuron will be connected to all neurons in the next layer. /// When running the network, the bias nodes always emit 1. /// /// To destroy a `fann` use the `fann_destroy` function. /// /// # Parameters /// /// * `num_layers` - The total number of layers including the input and the output layer. /// * `...` - Integer values determining the number of neurons in each layer starting /// with the input layer and ending with the output layer. /// /// # Returns /// /// A pointer to the newly created `fann`. /// /// # Example /// /// /// ``` /// // Creating an ANN with 2 input neurons, 1 output neuron, /// // and two hidden layers with 8 and 9 neurons /// unsafe { /// let ann = fann_sys::fann_create_standard(4, 2, 8, 9, 1); /// } /// ``` /// /// This function appears in FANN >= 2.0.0. pub fn fann_create_standard(num_layers: c_uint, ...) -> *mut fann; /// Just like `fann_create_standard`, but with an array of layer sizes /// instead of individual parameters. /// /// # Example /// /// ``` /// // Creating an ANN with 2 input neurons, 1 output neuron, /// // and two hidden layers with 8 and 9 neurons /// let layers = [2, 8, 9, 1]; /// unsafe { /// let ann = fann_sys::fann_create_standard_array(4, layers.as_ptr()); /// } /// ``` /// /// # See also /// `fann_create_standard`, `fann_create_sparse`, `fann_create_shortcut` /// /// This function appears in FANN >= 2.0.0. pub fn fann_create_standard_array(num_layers: c_uint, layers: *const c_uint) -> *mut fann; /// Creates a standard backpropagation neural network, which is not fully connected. /// /// # Parameters /// /// * `connection_rate` - The connection rate controls how many connections there will be in the /// network. If the connection rate is set to 1, the network will be fully /// connected, but if it is set to 0.5, only half of the connections will be set. /// A connection rate of 1 will yield the same result as `fann_create_standard`. /// * `num_layers` - The total number of layers including the input and the output layer. /// * `...` - Integer values determining the number of neurons in each layer /// starting with the input layer and ending with the output layer. /// /// # Returns /// A pointer to the newly created `fann`. /// /// # See also /// `fann_create_sparse_array`, `fann_create_standard`, `fann_create_shortcut` /// /// This function appears in FANN >= 2.0.0. pub fn fann_create_sparse(connection_rate: c_float, num_layers: c_uint, ...) -> *mut fann; /// Just like `fann_create_sparse`, but with an array of layer sizes /// instead of individual parameters. /// /// See `fann_create_standard_array` for a description of the parameters. /// /// # See also /// `fann_create_sparse`, `fann_create_standard`, `fann_create_shortcut` /// /// This function appears in FANN >= 2.0.0. pub fn fann_create_sparse_array(connection_rate: c_float, num_layers: c_uint, layers: *const c_uint) -> *mut fann; /// Creates a standard backpropagation neural network, which is not fully connected and which /// also has shortcut connections. /// /// Shortcut connections are connections that skip layers. A fully connected network with /// shortcut connections is a network where all neurons are connected to all neurons in later /// layers. Including direct connections from the input layer to the output layer. /// /// See `fann_create_standard` for a description of the parameters. /// /// # See also /// `fann_create_shortcut_array`, `fann_create_standard`, `fann_create_sparse`, /// /// This function appears in FANN >= 2.0.0. pub fn fann_create_shortcut(num_layers: c_uint, ...) -> *mut fann; /// Just like `fann_create_shortcut`, but with an array of layer sizes /// instead of individual parameters. /// /// See `fann_create_standard_array` for a description of the parameters. /// /// # See also /// `fann_create_shortcut`, `fann_create_standard`, `fann_create_sparse` /// /// This function appears in FANN >= 2.0.0. pub fn fann_create_shortcut_array(num_layers: c_uint, layers: *const c_uint) -> *mut fann; /// Destroys the entire network, properly freeing all the associated memory. /// /// This function appears in FANN >= 1.0.0. pub fn fann_destroy(ann: *mut fann); /// Runs input through the neural network, returning an array of outputs, the number of /// which being equal to the number of neurons in the output layer. /// /// Ownership of the output array remains with the `fann` structure. It may be overwritten by /// subsequent function calls. Do not deallocate it! /// /// # See also /// `fann_test` /// /// This function appears in FANN >= 1.0.0. pub fn fann_run(ann: *mut fann, input: *const fann_type) -> *mut fann_type; /// Give each connection a random weight between `min_weight` and `max_weight`. /// /// From the beginning the weights are random between -0.1 and 0.1. /// /// # See also /// `fann_init_weights` /// /// This function appears in FANN >= 1.0.0. pub fn fann_randomize_weights(ann: *mut fann, min_weight: fann_type, max_weight: fann_type); /// Initialize the weights using Widrow + Nguyen's algorithm. /// /// This function behaves similarly to `fann_randomize_weights`. It will use the algorithm /// developed by Derrick Nguyen and Bernard Widrow to set the weights in such a way /// as to speed up training. This technique is not always successful, and in some cases can be /// less efficient than a purely random initialization. /// /// The algorithm requires access to the range of the input data (ie, largest and smallest /// input), and therefore accepts a second argument, `data`, which is the training data that /// will be used to train the network. /// /// # See also /// `fann_randomize_weights`, `fann_read_train_from_file` /// /// This function appears in FANN >= 1.1.0. pub fn fann_init_weights(ann: *mut fann, train_data: *mut fann_train_data); /// Prints the connections of the ANN in a compact matrix, for easy viewing of the internals /// of the ANN. /// /// The output from `fann_print_connections` on a small (2 2 1) network trained on the xor /// problem: /// /// ```text /// Layer / Neuron 012345 /// L 1 / N 3 BBa... /// L 1 / N 4 BBA... /// L 1 / N 5 ...... /// L 2 / N 6 ...BBA /// L 2 / N 7 ...... /// ``` /// /// This network has five real neurons and two bias neurons. This gives a total of seven /// neurons named from 0 to 6. The connections between these neurons can be seen in the matrix. /// "." is a place where there is no connection, while a character tells how strong the /// connection is on a scale from a-z. The two real neurons in the hidden layer (neuron 3 and 4 /// in layer 1) have connections from the three neurons in the previous layer as is visible in /// the first two lines. The output neuron 6 has connections from the three neurons in the /// hidden layer 3 - 5 as is visible in the fourth line. /// /// To simplify the matrix output neurons are not visible as neurons that connections can come /// from, and input and bias neurons are not visible as neurons that connections can go to. /// /// This function appears in FANN >= 1.2.0. pub fn fann_print_connections(ann: *mut fann); /// Prints all of the parameters and options of the ANN. /// /// This function appears in FANN >= 1.2.0. pub fn fann_print_parameters(ann: *mut fann); /// Get the number of input neurons. /// /// This function appears in FANN >= 1.0.0. pub fn fann_get_num_input(ann: *const fann) -> c_uint; /// Get the number of output neurons. /// /// This function appears in FANN >= 1.0.0. pub fn fann_get_num_output(ann: *const fann) -> c_uint; /// Get the total number of neurons in the entire network. This number does also include the /// bias neurons, so a 2-4-2 network has 2+4+2 +2(bias) = 10 neurons. /// /// This function appears in FANN >= 1.0.0. pub fn fann_get_total_neurons(ann: *const fann) -> c_uint; /// Get the total number of connections in the entire network. /// /// This function appears in FANN >= 1.0.0. pub fn fann_get_total_connections(ann: *const fann) -> c_uint; /// Get the type of neural network it was created as. /// /// # Parameters /// /// * `ann` - A previously created neural network structure of type `fann` pointer. /// /// # Returns /// The neural network type from enum `fann_network_type_enum` /// /// # See also /// `fann_network_type_enum` /// /// This function appears in FANN >= 2.1.0 pub fn fann_get_network_type(ann: *const fann) -> fann_nettype_enum; /// Get the connection rate used when the network was created. /// /// # Parameters /// /// * `ann` - A previously created neural network structure of type `fann` pointer. /// /// # Returns /// The connection rate /// /// This function appears in FANN >= 2.1.0 pub fn fann_get_connection_rate(ann: *const fann) -> c_float; /// Get the number of layers in the network. /// /// # Parameters /// /// * `ann` - A previously created neural network structure of type `fann` pointer. /// /// # Returns /// /// The number of layers in the neural network /// /// # Example /// /// ``` /// // Obtain the number of layers in a neural network /// unsafe { /// let ann = fann_sys::fann_create_standard(4, 2, 8, 9, 1); /// assert_eq!(4, fann_sys::fann_get_num_layers(ann)); /// } /// ``` /// /// This function appears in FANN >= 2.1.0 pub fn fann_get_num_layers(ann: *const fann) -> c_uint; /// Get the number of neurons in each layer in the network. /// /// Bias is not included so the layers match the `fann_create` functions. /// /// # Parameters /// /// * `ann` - A previously created neural network structure of type `fann` pointer. /// /// The layers array must be preallocated to accommodate at least `fann_num_layers` items. /// /// This function appears in FANN >= 2.1.0. pub fn fann_get_layer_array(ann: *const fann, layers: *mut c_uint); /// Get the number of bias in each layer in the network. /// /// # Parameters /// /// * `ann` - A previously created neural network structure of type `fann` pointer. /// /// The bias array must be preallocated to accommodate at least `fann_num_layers` items. /// /// This function appears in FANN >= 2.1.0. pub fn fann_get_bias_array(ann: *const fann, bias: *mut c_uint); /// Get the connections in the network. /// /// # Parameters /// /// * `ann` - A previously created neural network structure of type `fann` pointer. /// /// The connections array must be preallocated to accommodate at least /// `fann_get_total_connections` items. /// /// This function appears in FANN >= 2.1.0. pub fn fann_get_connection_array(ann: *const fann, connections: *mut fann_connection); /// Set connections in the network. /// /// # Parameters /// /// * `ann` - A previously created neural network structure of type `fann` pointer. /// /// Only the weights can be changed, connections and weights are ignored /// if they do not already exist in the network. /// /// The array must accommodate `num_connections` items. /// /// This function appears in FANN >= 2.1.0. pub fn fann_set_weight_array(ann: *mut fann, connections: *mut fann_connection, num_connections: c_uint); /// Set a connection in the network. /// /// # Parameters /// /// * `ann` - A previously created neural network structure of type `fann` pointer. /// /// Only the weights can be changed. The connection/weight is /// ignored if it does not already exist in the network. /// /// This function appears in FANN >= 2.1.0. pub fn fann_set_weight(ann: *mut fann, from_neuron: c_uint, to_neuron: c_uint, weight: fann_type); /// Store a pointer to user defined data. The pointer can be retrieved with `fann_get_user_data` /// for example in a callback. It is the user's responsibility to allocate and deallocate any /// data that the pointer might point to. /// /// # Parameters /// /// * `ann` - A previously created neural network structure of type `fann` pointer. /// * `user_data` - A void pointer to user defined data. /// /// This function appears in FANN >= 2.1.0. pub fn fann_set_user_data(ann: *mut fann, user_data: *mut c_void); /// Get a pointer to user defined data that was previously set with `fann_set_user_data`. It is /// the user's responsibility to allocate and deallocate any data that the pointer might point /// to. /// /// # Parameters /// /// * `ann` - A previously created neural network structure of type `fann` pointer. /// /// # Returns /// A void pointer to user defined data. /// /// This function appears in FANN >= 2.1.0. pub fn fann_get_user_data(ann: *mut fann) -> *mut c_void; } #[cfg(test)] mod tests { use super::*; use std::ffi::CString; use std::fs::remove_file; use std::str::from_utf8; const EPSILON: fann_type = 0.2; #[test] fn test_tutorial_example() { let c_trainfile = CString::new(&b"test_files/xor.data"[..]).unwrap(); let p_trainfile = c_trainfile.as_ptr(); let c_savefile = CString::new(&b"test_files/xor.net"[..]).unwrap(); let p_savefile = c_savefile.as_ptr(); // Train an ANN with a data set and then save the ANN to a file. let num_input = 2; let num_output = 1; let num_layers = 3; let num_neurons_hidden = 3; let desired_error = 0.001; let max_epochs = 500000; let epochs_between_reports = 1000; unsafe { let ann = fann_create_standard(num_layers, num_input, num_neurons_hidden, num_output); fann_set_activation_function_hidden(ann, FANN_SIGMOID_SYMMETRIC); fann_set_activation_function_output(ann, FANN_SIGMOID_SYMMETRIC); fann_train_on_file(ann, p_trainfile, max_epochs, epochs_between_reports, desired_error); fann_save(ann, p_savefile); fann_destroy(ann); } // Load the ANN and execute input. unsafe { let ann = fann_create_from_file(p_savefile); assert!(EPSILON > (1.0 - *fann_run(ann, [-1.0, 1.0].as_ptr())).abs()); assert!(EPSILON > (1.0 - *fann_run(ann, [1.0, -1.0].as_ptr())).abs()); assert!(EPSILON > (-1.0 - *fann_run(ann, [1.0, 1.0].as_ptr())).abs()); assert!(EPSILON > (-1.0 - *fann_run(ann, [-1.0, -1.0].as_ptr())).abs()); fann_destroy(ann); } // Delete the ANN file created by the test. remove_file(from_utf8(c_savefile.to_bytes()).unwrap()).unwrap(); } }